
ar
X

iv
:1

30
8.

28
58

v2
 [

cs
.D

S]
 1

4
A

ug
 2

01
3

Parameterized Algorithms for Modular-Width

Jakub Gajarský1∗ Michael Lampis2 Sebastian Ordyniak1†

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
{gajarsky,ordyniak}@fi.muni.cz

2 KTH Royal Institute of Technology, Stockholm, Sweden
mlampis@kth.se

Abstract

It is known that a number of natural graph problems which are FPT parameterized by treewidth
become W-hard when parameterized by clique-width. It is therefore desirable to find a different
structural graph parameter which is as general as possible, covers dense graphs but does not incur
such a heavy algorithmic penalty.

The main contribution of this paper is to consider a parameter called modular-width, defined
using the well-known notion of modular decompositions. Using a combination of ILPs and dynamic
programming we manage to design FPT algorithms for Coloring and Partitioning into paths (and
hence Hamiltonian path and Hamiltonian cycle), which are W-hard for both clique-width and its
recently introduced restriction, shrub-depth. We thus argue that modular-width occupies a sweet
spot as a graph parameter, generalizing several simpler notions on dense graphs but still evading
the “price of generality” paid by clique-width.

1 Introduction

The topic of this paper is the exploration of the algorithmic properties of some structural graph pa-
rameters. This area is typically dominated by an effort to achieve two competing goals: generality
and algorithmic tractability. A good example of this tension is the contrast between treewidth and
clique-width.

A large wealth of problems are known to be FPT when parameterized by treewidth [6, 5, 4]. One
drawback of treewidth, however, is that this parameterization excludes a large number of interesting
instances, since, in particular, graphs of small treewidth are necessarily sparse. The notion of clique-
width (and its cousins rank-width [22] and boolean-width [7]) tries to ameliorate this problem by covering
a significantly larger family of graphs, including many dense graphs. As it turns out though, the price
one has to pay for this added generality is significant. Several natural problems which are known
to be fixed-parameter tractable for treewidth become W-hard when parameterized by these measures
[18, 17, 16].

It thus becomes an interesting problem to explore the trade-offs offered by these and other graph
parameters. More specifically, one may ask: is there a natural graph parameter which covers dense
graphs but still allows FPT algorithms for the problems lost to clique-width? This is the main question
motivating this paper. We first attempt to use the recently introduced notion of shrub-depth for this role
[20]. Shrub-depth is a restriction of clique-width which shows some hope, since it has been used to obtain
improved algorithmic meta-theorems. Unfortunately, as we will establish, the hardness constructions for
Coloring and Hamiltonian path used in [18] go through with small modifications for this restricted
parameter as well.

∗Research funded by the Czech Science Foundation under grant P202/11/0196
†Research funded by Employment of Newly Graduated Doctors of Science for Scientific Excellence

(CZ.1.07/2.3.00/30.0009).

1

http://arxiv.org/abs/1308.2858v2

The main contribution of this paper is then the consideration of a parameter called modular-width
which, we argue, nicely fills this niche. One way to define modular-width is by using the standard
concept of modular decompositions (see e.g. [24]), as the maximum degree of the optimal modular
decomposition tree. As a consequence, a graph’s modular-width can be computed in polynomial time.
Note that the concept of modular-width was already briefly considered in [8], but was then abandoned
in that paper in favor of the more general clique-width. To the best of our knowledge, modular-width
has not been considered as a parameter again, even though modular decompositions have found a large
number of algorithmic applications, including in parameterized complexity (see [21] for a general survey
and [26, 10, 1] for example applications in parameterized complexity).

We give here the first evidence indicating that modular-width is a structural parameter worthy
of further study. On the algorithmic side, modular-width offers a significant advantage compared to
clique-width, a fact we demonstrate by giving FPT algorithms for several variants of Hamiltonicity

and Chromatic number, all problems W-hard for clique-width. At the same time, we show that
modular-width significantly generalizes several simpler parameters, such as neighborhood diversity [23]
and twin-cover [19], which also allow FPT algorithms for these problems.

Our main algorithmic tool is a form of dynamic programming on the modular decomposition of
the input graph. Unlike dynamic programming on the more standard tree decompositions, the main
obstacle here is in combining the DP tables of the children of a node to compute the table for the node
itself. This is in general a hard problem, but we show that it can sometimes be made tractable if every
node of the decomposition has small degree, hence the parameterization by modular-width.

Even if the modular decomposition has small degree, combining the DP tables is still not necessarily
a trivial problem. A second idea we rely on (in the case of Hamiltonicity) is to use an Integer Linear
Program, whose number of variables is bounded by the number of modules we are trying to combine. It
is our hope that this technique, which seems quite general, will be applicable to other problems as well.

2 Preliminaries

We use standard notation from graph theory as can be found in, e.g., [9]. Let G be a graph. We denote
the vertex set of G by V (G) and the edge set of G by E(G). Let X ⊆ V (G) be a set of vertices of G.
The subgraph of G induced by X , denoted G[X], is the graph with vertex set X and edges E(G)∩ [X]2.
By G\X we denote the subgraph of G induced by V (G)\X . Similarly, for Y ⊆ E(G) we define G\Y to
be the subgraph of G obtained by deleting all edges in Y from G. For a graph G and a vertex v ∈ V (G),
we denote by NG(v) and NG[v] the open and closed neighborhood of v in G, respectively.

2.1 Considered Problems

We consider the following problems on graphs. Let G be a graph. A coloring of G is a function
λ : V (G) → N such that for every edge {u, v} ∈ E(G) it holds that λ(u) 6= λ(v). We denote by λ(G)
the set of colors used by the coloring λ, i.e., λ(G) = {λ(v) : v ∈ V (G) }, and by Λ(G) the set of all
colorings of G that use at most |V (G)| colors. The chromatic number of G, denoted by χ(G), is the
smallest number c such that G has a coloring λ with |λ(G)| ≤ c.

Graph Coloring

Input: A graph G.
Question: Compute χ(G).

Let G be a graph. A partition of G into paths is a set of disjoint paths of G whose union contains
every vertex of G. We denote by ham(G) the least integer p such that G has a partition into p paths.

Partitioning Into Paths

Input: A graph G.
Question: Compute ham(G).

2

Hamiltonian Path

Input: A graph G.
Question: Does G have a Hamiltonian Path?

Hamiltonian Cycle

Input: A graph G.
Question: Does G have a Hamiltonian Cycle?

2.2 Parameterized Complexity

Here we introduce the relevant concepts of parameterized complexity theory. For more details, we refer
to text books on the topic [12, 15, 25]. An instance of a parameterized problem is a pair (I, k) where I

is the main part of the instance, and k is the parameter. A parameterized problem is fixed-parameter
tractable if instances (I, k) can be solved in time f(k)|I|c, where f is a computable function of k, and c is
a constant. FPT denotes the class of all fixed-parameter tractable problems. Hardness for parameterized
complexity classes is based on fpt-reductions. A parameterized problem L is fpt-reducible to another
parameterized problem L′ if there is a mapping R from instances of L to instances of L′ such that
(i) (I, k) ∈ L if and only if (I ′, k′) = R(I, k) ∈ L′, (ii) k′ ≤ g(k) for a computable function g, and
(iii) R can be computed in time O(f(k)|I|c) for a computable function f and a constant c. Central
to the completeness theory of parameterized complexity is the hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆
Each intractability class W[t] contains all parameterized problems that can be reduced to a certain
parameterized satisfiability problem under fpt-reductions.

2.3 Treewidth

The treewidth of a graph is defined using the following notion of a tree decomposition (see, e.g., [3]).
A tree decomposition of an (undirected) graph G = (V,E) is a pair (T, χ) where T is a tree and χ is
a labeling function that assigns each tree node t a set χ(t) of vertices of the graph G such that the
following conditions hold: (1) Every vertex of G occurs in χ(t) for some tree node t, (2) For every edge
{u, v} of G there is a tree node t such that u, v ∈ χ(t), and (3) For every vertex v of G, the tree nodes
t with v ∈ χ(t) form a connected subtree of T . The width of a tree decomposition (T, χ) is the size of
a largest bag χ(t) minus 1 among all nodes t of T . A tree decomposition of smallest width is optimal.
The treewidth of a graph G is the width of an optimal tree decomposition of G.

2.4 Shrub-depth

The recently introduced notion of shrub-depth [20] is the “low-depth” variant of clique-width, similar to
the role that tree-depth plays with respect to treewidth.

Definition 1. We say that a graph G has a tree-model of m colors and depth d ≥ 1 if there exists a
rooted tree T (of height d) such that

1. the set of leaves of T is exactly V (G),

2. the length of each root-to-leaf path in T is exactly d,

3. each leaf of T is assigned one of m colors (this is not a graph coloring, though),

4. and the existence of a G-edge between u, v ∈ V (G) depends solely on the colors of u, v and the
distance between u, v in T .

The class of all graphs having a tree-model of m colors and depth d is denoted by TMm(d).

Definition 2. A class of graphs G has shrub-depth d if there exists m such that G ⊆ TMm(d), while
for all natural m it is G 6⊆ TMm(d− 1).

3

Note that Definition 2 is asymptotic as it makes sense only for infinite graph classes. Particularly,
classes of shrub-depth 1 are known as the graphs of bounded neighborhood diversity in [23], i.e., those
graph classes on which the twin relation on pairs of vertices (for a pair to share the same set of neighbors
besides this pair) has a finite index.

2.5 Properties of Shrupth-depth

In this section we will show some technical results that will later help us for our hardness proofs. For
two graphs G and H , let G ⊲⊳ H denote the set of graphs such that they consist of a copy of G, a copy
of H (disjoint from G) and arbitrary edges between vertices of G and H .

Proposition 1. Let G be a graph with tree-model TMG of height d which uses m colors and let H

be a graph. Then there exists, for every G′ ∈ G ⊲⊳ H, a tree-model of height d which uses at most
m · 2|V (H)| + |V (H)| colors.

Proof. For simplicity, we refer to copies of G and H in G′ by G and H . We fix arbitrary ordering of
V (H).

Since each vertex of G is adjacent to some subset of V (H) in G′, there are at most 2V (H) “types” of
vertices in G according to their neighborhoods in H . We extend the colors used in the leaves of TMG

by |V (H)| bits and for each leaf l of TMG, we set these bits as follows: we set the i-th bit to 1 iff the
vertex v of G which corresponds to l in TMG is adjacent to the i-th vertex of H in G′. We denote this
new tree-model by TM+

G.
Next, we construct a tree-model TMH of height one for H – it consists of a root vertex and V (|H |)

leaves, each of different color (we use new colors, different from those of TM+
G).

Now we construct a tree-model TMG′ of G′ – we connect the root of TMH to the root of TM+
G by a

path of length d− 1 (to ensure that the leaf-to-root distance is the same in the whole tree-model; if the
height of TM+

G is one, we identify the root of TMH with the root of TM+
G.) It is not hard to see that

TMG′ is a tree-model of G′:

• the edges in the “H”-part of G′ depend only on the colors of the subtree TMH of TMG′ ,

• the edges in the “G”-part of G′ depend only on the colors of the subtree TM+
G of TMG′ and the

original distances in TMG (simply by looking at the colors of leaves before adding new bits, i.e.
ignoring additional bits),

• the edges between the vertices of “H”- and “G”-parts depend only on the colors used in the
“H”-part and the newly added bits in the “G”-part of G′ (all are at distance 2d in TMG′),

• none of these three edge-dependencies affect the other two.

Proposition 2. Let G be a graph, S a subset of its vertices, and TMG its tree-model of height dG and
mG colors. Let H be a graph, R a subset of its vertices, and TMH its tree-model of height dH and mH

colors. Assume that dH ≤ dG. Then the graph G′ obtained by taking a copy of G, a copy of H, and
making each vertex from S adjacent to each vertex of R has a tree-model TMG′ of height d and at most
2mG + 2mH colors.

Proof. We assume that the sets of colors in TMG and TMH are disjoint. The proof uses the same idea
as the proof of Proposition 1. First, we extend the colors in both TMH and TMG by one additional
bit. For a leaf of TMG, we set this bit to 1 iff the corresponding vertex of G is in S. Similarly, for a
leaf of TMH , we set this bit to 1 iff the corresponding vertex of H is in R. We denote the tree-models
obtained in this way by TM+

G and TM+
H .

Now we construct TMG′ by connecting the root of TMH to the root of TMG by a path of length
dG − dH (or identify these two roots if dG = dH). The distances between the pairs of leaves in both
“G”- and “H”-parts of TMG′ are the same as they were in TMG and TMH ; their original colors can be
“recovered” by simply ignoring the newly added bit. The existence of an edge between a vertex from G

4

and a vertex from H in G′ is determined by TMG′ by the value of the additional bit and the fact that
their colors come from different tree-models (the sets of colors were disjoint); the distance between them
is always 2d. Thus, TMG′ is indeed a tree-model of G′. Since the numbers dG and dH were doubled
by adding a new bit to each color and since TMG′ does not use any other color, the Proposition is now
proved.

Proposition 3. Let G be a graph with a tree-model TMG of height d and m colors and let R be a subset
of V (G). Let H be a graph and S be a subset of V (H). Let G′ be the graph obtained from G by creating
|R| copies of H indexed by vertices of R and making each v ∈ R adjacent to the vertices Sv of Hv. Then
G′ has a tree-model TMG′ of height d+ 1 and m+ |V (H)| colors.

Proof. We extend the set of colors used in TMG by |V (G)| new colors. The construction of TMG′ from
TMG is simple – for each v ∈ R, replace its corresponding leaf l in TMG by a tree of height one which
has:

• leaf l′ with the same color as l

• |V (H)| leaves, each with different color from the newly created colors

For each v 6∈ R, subdivide once the edge to which its corresponding leaf was adjacent in TMG (to have
the same leaf-to-root distance in the whole TMG′).

It is easy to see that TMG′ is indeed a tree-model of G′ – for each v ∈ R the leaves corresponding
to v and V (Hv) in TMG′ are at distance two from each other and the adjacency depends only on the
colors. The color of each leaf corresponding to v ∈ V (G) remained the same, and the distance between
each pair of such leaves was increased by 2.

Lemma 1. Let G be a class of graphs which admit a tree-decomposition of width w and height d. Then
G has shrub-depth d+ 1.

Proof. Let G ∈ G. We proceed by induction on the height d of a tree-decomposition (T, χ) of G of width
at most w.

If the height is 0, then the tree-decomposition consists of 1 bag which contains at most w vertices.
A tree-model of height 1 for the graph induced by this bag can be easily constructed – create a tree of
height 1, with 1 leaf for every vertex in the bag and assign each leaf a different color. For graphs of
treewidth w, these tree-models always use at most w colors.

If the height of T is d, we take a root bag Br (by root bag we mean any bag whose distance to any
other bag is at most d) of the tree-decomposition and create a tree-model TMr of height one for the
graph induced by the bag; this requires at most w colors. After deleting this bag from the decomposition,
we are left with a collection of tree-decompositions of height d− 1. We delete all vertices of Br from all
bags of these decompositions. By the induction hypothesis, the graphs induced by these decompositions
have tree-models of height d with at most m colors (for some natural m, which depends only on d and
w). Let us denote these tree-models by TMi.

Now we construct a tree-model TM− of height d+1 by introducing a root vertex r and connecting the
root of each TMi to r. This is a tree-model of G\Br , which uses m colors. Since G ∈ G[Br] ⊲⊳ G[G\Br],
we can use Proposition 1 to conclude that there exists a tree-model TMG of G of height d + 1 which
uses at most m · 2w + w colors. Since neither m or w depend on particular choice of G, this concludes
the proof.

2.6 Modular-Width

For our algorithms we consider graphs that can be obtained from an algebraic expression that uses the
following operations:

(O1) create an isolated vertex;

5

(O2) the disjoint union of 2 graphs, i.e., the disjoint union of 2 graph G1 and G2, denoted by
G1 ⊕G2, is the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪E(G2);

(O3) the complete join of 2 graphs, i.e., the complete join of 2 graphs G1 and G2, denoted by
G1 ⊗G2, is the graph with vertex set V (G1)∪ V (G2) and edge set E(G1)∪E(G2)∪ { {v, w} : v ∈
V (G1) and w ∈ V (G2) };

(O4) the substitution operation with respect to some graph G with vertices v1, . . . , vn, i.e.,
for graphs G1, . . . , Gn the substitution of the vertices of G by the graphs G1, . . . , Gn, denoted
by G(G1, . . . , Gn), is the graph with vertex set

⋃

1≤i≤n V (Gi) and edge set
⋃

1≤i≤n E(Gi) ∪
{ {u, v} : u ∈ V (Gi) and v ∈ V (Gj) and i 6= j }. Hence, G(G1, . . . , Gn) is obtained from G

by substituting every vertex vi ∈ V (G) with the graph Gi and adding all edges between the
vertices of a graph Gi and the vertices of a graph Gj whenever {vi, vj} ∈ E(G).

Let A be an algebraic expression that uses only the operations (O1)–(O4). We define the width of A as
the maximum number of operands used by any occurrence of the operation (O4) in A. It is well-known
that the modular-width of a graph G, denoted mw(G), is the least integer m such that G can be obtained
from such an algebraic expression of width at most m. Furthermore, an algebraic expression of width
mw(G) can be constructed in linear time [27].

2.7 Integer Linear Programming

For our algorithms, we use the well-known result that Integer Linear Programming is fixed-
parameter tractable parameterized by the number of variables.

Integer Linear Programming Feasibility Parameter: p
Input: A matrix A ∈ Zm×p and a vector b ∈ Zm.
Question: Is there a vector x ∈ Zp such that Ax ≤ b?

Proposition 4 ([14]). Integer Linear Programming Feasibility is fixed-parameter tractable and
can be solved in time O(p2.5p+o(p) · L) where L is the number of bits in the input.

3 Hardness for Problems on Shrub-depth

In this section we give evidence that the recently introduced parameter shrub-depth is not restrictive
enough to obtain fixed-parameter algorithms for problems that are W[1]-hard on graphs of bounded
cliquewidth. In particular, we show that Graph Coloring and Hamiltonian Path are W[1]-hard
parameterized by the number of colors (used in a tree-model of the input graph) on classes of graphs
of shrub-depth 5. Note that restricting the shrub-depth means restricting the height of the tree-model
that can be employed and for every restriction on the height of the tree-model the number of colors
needed to model the graph gives a different parameter. In particular, if we restrict the shrub-depth
to 1 the number of colors of the tree-model corresponds to the neighborhood diversity of a graph.
This implies that Graph Coloring and Hamiltonian Path become fixed-parameter tractable when
parameterized by the number of colors (used in a tree-model of the input graph) on classes of graphs of
shrub-depth 1 [23]. It is an interesting open question what is the least possible shrub-depth that allows
for fixed-parameter algorithms for the problems Graph Coloring and Hamiltonian Path.

Theorem 1. Graph Coloring parameterized by the number of colors (used in a tree-model of the
input graph) is W[1]-hard on classes of graphs of shrub-depth 5.

We will prove the above theorem after showing the following lemma.

Lemma 2. Equitable Coloring is W[1]-hard parameterized by the variant of treewidth, where the
height of the tree (of the tree-decomposition) is at most 3.

6

Proof. Our proof uses the same reduction as the proof of [13, Theorem 5.]. We only show that the
tree-decompositions of the graphs constructed there have height at most 3.

The graph G′ constructed in [13] consists of a disjoint union of trees of height 2. Hence, the tree-
decomposition of G′ has height at most 3. The next step in their construction is to add an appropriate
number of isolated vertices to G′. This step does not increase the height of the tree-decomposition any
further.

The final step of their reduction consists of adding a clique and connecting some vertices of the
clique to some vertices of the graph constructed above. Hence, a tree-decomposition of height 3 for the
whole graph can be obtained by adding all vertices of the clique to every bag of the already constructed
tree-decomposition.

Proof of Theorem 1. Our proof uses the same reduction from Equitable Coloring on graphs of
bounded treewidth as the proof of [16, Theorem 3.2]. We only show that the graphs constructed
there have tree-models of height at most 5 that use at most f(w) colors, where the input graph G has
a tree-decomposition of width w and height 3.

For the input graph G, we consider its tree-model TMG of height 4 and with at most m colors (for
some m which does not depend on G) whose existence is guaranteed by Lemma 1 and Lemma 2. We
replace each leaf of TMG by a tree of height one which has the following leaves:

• vertex u which was replaced from the original tree-model, with the same color as u had in TMG

• r vertices colored by S1 to Sr

• r vertices colored by P1 to Pr

We create a tree-model for the clique PM of size r, where each vertex has a different color pi, 1 ≤ i ≤ r.
Finally, we create tree-models of height 1 for cliques Ci (1 ≤ i ≤ r) of size n r−1

r
, each of them fully

colored by color ci.
For each i ∈ {1, . . . r}, the union of all vertices colored by Si (Pi) corresponds to the set Si (Pi)

in [16, Theorem3.2], respectively. Similarly graphs PM , C1, . . . Cr correspond to their counterparts of
the same name in [16, Theorem3.2].

We connect the roots of tree-models of PM , C1, . . . Cr to the root of TMG (by a path of appropriate
length, so that the leaf-to-root distance is the same in the whole tree) to obtain TM′

G.
The height of TM′

G is 5, because the height of TMG was 4 and during the construction the height
increased by one (by replacing leaves by trees of height one).

Now we describe the edges and their dependencies in TM′
G:

• all edges from the original graph remain the same, TM′ clearly encodes this information, since the
only thing that changed is that the distance between every pair u, v of leaves from the original
tree-model increased by 2;

• we make each u adjacent to each vertex with label Pi (for all i ∈ {1, . . . , r}, in the whole tree-
model), i.e. for all distances between leaves, all the vertices colored by colors of the original
tree-model are adjacent to all the vertices colored by Pi;

• we make each u adjacent to “its” vertices colored by Si, (for all i ∈ {1, . . . , r}) i.e. for distance 2,
all vertices which have colors from the original tree-model are adjacent to all the vertices colored
by Si, i ∈ {1, . . . , r};

• we make each vertex colored by Si adjacent to the whole clique PM except for a vertex colored by
pi, i.e. for distance 10, each vertex colored by Si is adjacent to each vertex colored by pj, except
when i = j;

• for distance 2, vertices colored Pi and Sj are not adjacent if i = j, and are adjacent if i 6= j. For
distance higher than 2, vertices colored by Pi and Sj are adjacent, whether i = j or not;

• we make, for each i, every vertex of Ci adjacent to all vertices of colored by Si, i.e. for distance
10, vertices colored by ci and Si are adjacent, for i ∈ {1, . . . , r}

7

• we make, every vertex of Ci adjacent to all vertices colored by Pj , i 6= j, i.e. for distance 10,
vertices colored by ci and Pj , for all i, j ∈ {1, . . . , r} are adjacent, except when i = j.

The reduction from [16, Theorem3.2] is now completed, and TM′
G represents the resulting graph of this

reduction. We used at most m colors of the tree-model of original graph and 4r new colors Si, Pi, ci, pi.
The number of colors in TM′

G therefore bounded by m+ 4r, which concludes the proof.

Theorem 2. Hamiltonian Path parameterized by the number of colors (used in a tree-model of the
input graph) is W [1]-hard on class of graphs of shrub-depth 5.

We observe that the reduction showing W [1]-hardness of Capacitated Dominating Set on
bounded treewidth given in [11] actually shows that this problem is W [1]-hard with respect to the
variant of treewidth, where the height of the tree (of the tree-decomposition) is at most 2.

We then proceed by showing that the reduction given in [18] from Capacitated Dominating Set

parameterized by treewidth to Hamiltonian Path parameterized by cliquewidth produces graphs of
shrub-depth at most 5.

Proposition 5. Capacitated Dominating Set is W [1]-hard when parametrized by the variant of
treewidth, where the height of the tree (of the tree-decomposition) is at most 2.

Proof. Our proof uses the same reduction as the proof of [11, Theorem 1.]. We only show that the
tree-decompositions of the graphs constructed there have height at most 2. Indeed, in the graph H

constructed in [11, Section 3.1.], delete the sets Si and Si,j and all the vertices xi, yi, zi, pi,j , qi,j . After
this, we are left with a forest of height 1, which has a tree-decomposition of height 2. After adding all
deleted vertices to each bag, we obtain a tree-decomposition of the whole graph of height 2 and of width
O(k4).

Proof of Theorem 2. We use the reduction from [18, Theorem 5.1]. We show that when the instances
of Capacitated Dominating Set have a tree-decomposition of height 2, then the graphs we obtain
by their reduction have shrub-depth at most 5.

First we argue that, when we begin with the graph G which has a tree-decomposition of height 2, the
graph G′(c′) has a tree-decomposition of height 3. The graph G′(c′) is the graph obtained after the first
step of the reduction with an assumption that the capacity of each vertex is exactly one. This graph
is basically obtained by replacing each vertex of G by a gadget and replacing each edge of G by two
gadgets. Since these gadgets have constant size, one can just replace each occurrence of vertex v in the
tree-decomposition of G by a gadget, and “hang” the bag containing the pair of gadgets corresponding
to an edge u, v in G to any bag which contained these two vertices in the original tree-decomposition.
This increases the height of the tree-decomposition by at most one.

By Lemma 1, the resulting graph has a tree-model TM1 of height 4 and at most m colors, for some
natural m (which depends only on the height of the newly created tree-decomposition (3) and its width
w′, which is bounded by a constant multiple of w).

Graph G′(c) is obtained from G′(c′) by adding vertices, each of which is a twin of some vertex from
G′(c′). Even though this can in general affect the number of colors in the tree-model of a graph, in
this particular instance it is not the case – each vertex to which we add twin vertices has two neighbors
and is the only vertex which has this neighborhood. We can therefore construct the tree-model TM2 of
G′(c) by simply adding siblings (with the same color) to the corresponding leafs of TM1.

The second part of the reduction consists of introducing a graph which consists of 2 new vertices
connected by an appropriate number of paths of length two. Let Y denote the set of middle vertices
of these paths. All vertices from Y are connected to some subset of V (G′(c)). It is easy to construct a
tree-model of height 1 with 2 colors for this graph (root, one color for vertices of Y and one color for
remaining two vertices) and therefore by Proposition 3 there exists a tree-model TM3 of the resulting
graph of height 4 and with 2m+ 4 colors.

Next, to some subset of vertices of the graph induced by TM3, a copy of a gadget of fixed size c is
connected (in the same fashion for all vertices). The tree-model of this gadget of height 1 with c colors
is easy to construct and therefore by Proposition 2 the tree-model TM4 of the graph obtained in this
way has height 5 and at most 2m+ 4 + c colors.

8

vc

nd tc

mw sd tw

cw

Figure 1: Relationship between vertex cover (vc), neighborhood diversity (nd), twin-cover (tw), modular-
width (mw), shrub-depth (sd), treewidth (tw), and clique-width (cw). Arrows indicate generalizations,
e.g., modular-width generalizes both neighborhood diversity and twin-cover.

After this, two specific vertices x and y of each of these newly added gadgets are connected to the
whole Y . By the construction from the proof of Proposition 2 each vertex from Y now has one of two
colors in TM4 and no vertex outside Y has any of these colors. By the construction from the proof of
Proposition 3 the copies of vertices x and y have the same colors in the whole TM4, and no other vertex
has this color. It follows that these newly added edges depend only on the colors of the leaves of the
tree-model.

The final step of reduction consists of adding an independent set, which is connected to some subset
of G′. An independent set has tree-model of height 1 and 1 color and therefore by Proposition 2 the
resulting graph has tree-model TM5 of height 5 and at most 2(2m+ 4 + c) + 2 colors.

Since neither m nor c depend on the choice of G, the theorem is now proved.

4 Modular-Width and Other Parameters

In this section we study the relationships of modular-width, shrub-depth and other important width
parameters. Of particular importance is the observation that modular-width generalizes the recently
introduced parameters neighborhood diversity [23] and twin-cover [19]. Both of these parameters have
been introduced to obtain FPT algorithms on dense graphs for problems that are hard for clique-width.
Figure 1 summarizes these relationships. Most of these relationships are well-known or have recently
been shown in [23, 19, 20, 8]. Consequently, we only show the relationships whose proofs cannot been
found anywhere else.

Theorem 3. Let G be a graph. Then mw(G) ≤ nd(G) and mw(G) ≤ 2tc(G)+tc(G). Furthermore, both
inequalities are strict, i.e., there are graphs with bounded modular-width and unbounded neighborhood
diversity (or unbounded twin-cover number).

Proof. Let G be a graph. Using the definition of neighborhood diversity from [23] it follows that G has
a partition {V1, . . . , Vnd(G)} of its vertex set such that for every 1 ≤ i ≤ nd(G) it holds that the graph
G[Vi] is either a clique or an independent set and for every 1 ≤ i < j ≤ nd(G), either all vertices in Vi

are adjacent to all vertices of Vj or G contains no edges between vertices in Vi and vertices in Vj . Let
G′ be the graph with vertex set v1, . . . , vnd(G) and an edge between vi and vj if and only if the graph
G contains all edges between vertices in Vi and vertices in Vj . Then G = G′(G[V1], . . . , G[Vnd(G)]).
Furthermore, because for every 1 ≤ i ≤ nd(G), Vi is either a clique or an independent set, we can obtain
the graph G[Vi] from an algebraic expression Ai that uses only the operations (O1)–(O3). Substituting
the algebraic expressions Ai for every G[Vi] into G′(G[V1], . . . , G[Vnd(G)]) gives us the desired algebraic
expression for G of width nd(G).

Let G be a graph. Using the definition of twin-cover from [19] it follows that there is a set C of
at most tc(G) vertices of G such that every component C′ of G \ C is a clique and every vertex in
C′ is connected to the same vertices in C. Let C1, . . . , Cl be sets of components of G \ C such that 2

9

components of G\C are contained in the same set Ci if and only if their vertices have the same neighbors
in C. Because there are at most 2|C| possible such neighborhoods, we obtain that l ≤ 2|C|. Let G′ be
the graph with vertices C ∪ {c1, . . . , cl} and edges E(G[C]) ∪ { {ci, vi} : vi ∈ NG(Ci) }. Then G =
G′(v1, . . . , v|C|, G[C1], . . . , G[Cl]). Furthermore, because the graphs G[Ci] are disjoint unions of cliques,
we can obtain each of these graphs from an algebraic expression Ai that uses only the operations (O1)–
(O3). Substituting the algebraic expressions Ai for every G[Ci] into G′(v1, . . . , v|C|, G[C1], . . . , G[Cl])

gives us the desired algebraic expression for G of width 2|C| + |C| ≤ 2tc(G) + tc(G).
To see that both inequalities are strict we refer the reader to [20, Example 5.4 a)]. The example

exhibits a family of co-graphs, i.e., graphs of modular-width 0, with unbounded neighborhood diversity
and unbounded twin-cover number.

The following theorem shows that modular-width and shrub-depth are orthogonal to each other.

Theorem 4. There are classes of graphs with unbounded modular-width and bounded shrub-depth and
vice versa.

Proof. Let Sn be the graph obtained from a star (with n leaves) after subdividing every edge exactly
once and let S be the class of all these graphs. Because Sn is a prime graph, its modular-width equals
its number of vertices, i.e., 2n + 1. Consequently, S has unbounded modular-width. We next show
that S has shrub-depth at most 2 by showing that Sn has a tree-model of height 2 that uses at most 3
colors. The tree-model consists of a root r that has n+1 children, such that n of these children (which
correspond to the n edges around the center of the star) have 2 children themselves colored by color 1
and 2, respectively, and the remaining child has only 1 child (which corresponds to the center of the
star) which is colored by color 2. Then Sn can be defined in this tree-model.

To show the “vice versa” part of the theorem, we refer the reader to [20, Example 5.4 a)]. The
example gives a family of co-graphs, i.e., graphs with modular-width 0, that has unbounded shrub-
depth.

The next theorem shows that also shrub-depth generalizes neighborhood diversity and twin-cover.

Theorem 5. Let G be a class of graphs. If G has bounded neighborhood diversity or bounded twin-cover
number then G has shrub-depth at most 2. Furthermore, there are classes of graphs that have unbounded
neighborhood diversity and twin-cover number but shrub-depth 2.

Proof. Suppose that G has bounded neighborhood diversity, i.e., there is some natural number c such
that nd(G) ≤ c for every G ∈ G. We show that every graph G ∈ G has a tree-model of height at most 1
that uses at most nd(G) ≤ c colors. Using the definition of neighborhood diversity from [23] it follows
that G has a partition {V1, . . . , Vnd(G)} of its vertex set such that for every 1 ≤ i ≤ nd(G) it holds that
the graph G[Vi] is either a clique or an independent set and for every 1 ≤ i < j ≤ nd(G), either all
vertices in Vi are adjacent to all vertices of Vj or G contains no edges between vertices in Vi and vertices
in Vj . Then the tree-model for G consists of a root r and 1 leave for every vertex v in G with color i if
v ∈ Vi.

Now, suppose that G has bounded twin-cover, i.e., there is some natural number c such that tc(G) ≤ c

for every G ∈ G. We show that every graph G ∈ G has a tree-model of height at most 2 that uses at
most 2tc(G)+ tc(G) ≤ 2c+ c colors. Using the definition of twin-cover from [19] it follows that there is a
set W = {w1, . . . , wtc(G)} of tc(G) vertices of G such that every component C′ of G \W is a clique and

every vertex in C′ is connected to the same vertices in W . Let C1
1 , . . . , C

1
p1
, . . . , Cl

1, . . . , C
l
pl

be all the

components of G \W such that 2 components C
j1
i1

and C
j2
i2

have the same neighborhood in W if and

only if j1 = j2. Because there are at most 2|W | possible such neighborhoods, we obtain that l ≤ 2|W |.
We construct a tree-model of G as follows. We start with the root node r, which has 1 child, say C

j
i ,

for every component of G \W , and 1 child (which is also a leaf of the tree-model), say wi, with color
l + i for every 1 ≤ i ≤ |W |. Finally, every node C

j
i has |V (Cj

i)| children (which are also leaves of the
tree-model) with color j. This finishes the construction of the tree-model for G.

To see that there are classes of graphs that have unbounded neighborhood diversity and twin-cover
number but shrub-depth 2, consider the class S from the proof of Theorem 4. As shown in Theorem 4

10

S has unbounded modular-width but shrub-depth 2. It now follows from Theorem 3 that S has also
unbounded neighborhood diversity and unbounded twin-cover number.

5 Algorithms on Modular-width

In this section we show that Partitioning Into Paths, Hamiltonian Path, Hamiltonian Cycle,
and Coloring are fixed-parameter tractable parameterized by the modular-width of the input graph.
Our algorithms use a bottom-up dynamic programming approach along the parse-tree of an algebraic
expression as defined in Section 2.6. That is for every node of such a parse-tree we compute a solution
(or a record representing a solution) given solutions (or records) for the children of the node in the
parse-tree. The running time of our algorithms is then the number of nodes in the parse-tree times
the maximum time spend at any node of the parse-tree. Because the number of nodes of a parse-tree
is linear in the number of vertices of the created graph, it suffices to bound the maximum time spend
at any node of the parse-tree. Furthermore, because the operations (O1)–(O3) can be replaced by one
operation of type (O4) that uses at most 2 operands, we only need to bound the time spend to compute
a record for the graph obtained by operation (O4). To avoid cumbersome run-time bounds we use the
notation O+ to suppress poly-logarithmic factors, i.e., we write O+(f) when we have O(f logd f) for
some constant d.

5.1 Coloring

This section is devoted to a proof of the following theorem. Recall the definition of Graph Coloring

and related notions from Section 2.1.

Theorem 6. Graph Coloring parameterized by the modular-width of the input graph is fixed-parameter
tractable.

As outlined above we only need to bound the time spend to compute a record for a node of type
(O4) of the parse-tree. In the case of Graph Coloring a record is simply the chromatic number of
the graph. Hence, we will have shown the theorem after showing the following lemma.

Lemma 3. Let G be a graph with vertices v1, . . . , vn, G1, . . . , Gn be graphs, and H := G(G1, . . . , Gn).
Then χ(H) can be computed from χ(G1), . . . , χ(Gn) in time O+(2nn2 max1≤i≤n χ(Gi)).

We will prove the lemma by reducing the coloring problem to the following problem.

Max Weighted Partition

Input: An n-element set N and functions f1, . . . , fk from the subsets of N to integers from the
range [−M,M].
Question: A k-partition (S1, . . . , Sk) of N that maximizes f1(S1) + · · ·+ fk(Sk).

Proposition 6. ([2, Theorem 4.]) Max Weighted Partition can be solved in time O+(2nk2M).

To simplify the reduction to Max Weighted Partition we need the following Proposition and
Lemma.

Proposition 7 ([23]). Let G be a graph with vertices v1, . . . , vn and s1, . . . , sn be natural numbers. Then
χ(G(Ks1 , . . . ,Ksn)) = minλ∈Λ(G)(

∑

c∈λ(G) max{ si : vi ∈ λ−1(c) }).

Lemma 4. Let G be a graph with vertices v1, . . . , vn, G1, . . . , Gn be graphs, HK := G(Kχ(G1), . . . ,Kχ(Gn)),
and H := G(G1, . . . , Gn). Then χ(HK) = χ(H).

Proof. We will show that for every coloring λ of H there is a coloring λK of H ′ that uses no more
colors, i.e., |λK(HK)| ≤ |λ(H)|, and vice versa. Let λ be a coloring for H . Then for every 1 ≤ i ≤ n

the number of colors used to color the copy of Gi in H is at least χ(Gi). Hence, we can use a subset of
these colors to color the copy of Kχ(Gi) in HK .

11

For the reverse direction, let λK be a coloring for HK . Then for every 1 ≤ i ≤ n the number of
colors used to color the copy of Kχ(Gi) in HK is χ(Gi). Hence, we can use the same colors to color the
copy of Gi in H .

We can now proceed with a proof of Lemma 3.

of Lemma 3. We reduce the coloring problem to the Max Weighted Partition problem as follows:
We set N := V (G) and f1(S) = · · · = fk(S) = −max{χ(Gi) : vi ∈ S } for every subset S of N .
It follows from Proposition 7 and Lemma 4 that the maximum weight of a partition of this instance
corresponds to the chromatic number χ(H). Hence, the lemma follows from Proposition 6.

5.2 Partitioning into Paths

This section is devoted to a proof of the following theorem. Recall the definition of Partitioning Into

Paths and related notions from Section 2.1.

Theorem 7. Partitioning Into Paths (and hence also Hamiltonian Path and Hamiltonian

Cycle) parameterized by the modular width of the input graph is fixed-parameter tractable.

As outlined above we only need to bound the time spend to compute a record for a node of type
(O4) of the parse-tree. In the case of Partitioning Into Path a record of a graph G is the pair
(ham(G), |V (G)|). Hence, we will have shown the theorem after showing the following lemma. From now
on we will assume that G is a graph with vertices v1, . . . , vn, G1, . . . , Gn are graphs, H = G(G1, . . . , Gn),
and m = |E(G)|.

Lemma 5. Given the graph G and the pairs (ham(G1), |V (G1)|), . . . , (ham(Gn), |V (Gn)|) the pair

(ham(H), |V (H)|) can be computed in time O+
(

ham (H)
(

(m+ n)2n + n (2(m+ n))
5(m+n)+o(m+n)

))

The remainder of this section is devoted to a proof of this lemma.
For a graph G and an integer i we define the graph G⊕i as the graph with vertex set V (G)∪{1, . . . , i}

and edge set E(G) ∪ { {v, j} : v ∈ V (G) and 1 ≤ j ≤ i }, i.e., the graph G ⊕ i is obtained from G by
adding i vertices and connect them to every vertex in G.

Proposition 8. Let G be a graph and
h(G) = min{ i : G⊕ i has a Hamiltonian cycle }. Then ham(G) = h(G).

Proof. We first show that h(G) ≤ ham(G). Let {P1, . . . , Pham(G)} be a partition of G into paths. Then
G⊕ham(G) contains the Hamiltonian cycle 1, P1, 2, P2, . . . , ham(G), Pham(G), 1, as required. It remains
to show that ham(G) ≤ h(G). Let C be a Hamiltonian cycle in G⊕ h(G). Then C \ {1, . . . , h(G)} is a
partition of G into at most h(G) disjoint path, as required.

A slightly less general version of the following lemma has already been proven in [23].

Lemma 6. Let Hamiltonian Cycle be the ILP with variables { eij, eji : {vi, vj} ∈ E(G) } and
constraints:

For every 1 ≤ i ≤ n:
(1)

∑

j∈{ l : vl∈NG(vi) }
eij =

∑

j∈{ l : vl∈NG(vi) }
eji (“incoming = outgoing”)

(2)
∑

j∈{ l : vl∈NG(vi) }
eij ≤ |V (Gi)| (at most |V (Gi)|)

(3) ham(Gi) ≤
∑

j∈{ l : vl∈NG(vi) }
eij (at least ham(Gi))

For every partition of V (G) into vertex sets A and B:
(4)

∑

1≤i<j≤n : {vi,vj}∈E(G)∧|e∩A|=1 eij + eji ≥ 1 (“connectivity”)

For every variable eij :
(5) eij ≥ 0.

12

Then H has a Hamiltonian cycle if and only if the ILP Hamiltonian Cycle is feasible. Furthermore,
the size of the ILP is at most O+(m2n) and it has 2m variables.

Proof. The size bound on the ILP Hamiltonian Cycle is obvious. Suppose that H has a Hamiltonian
cycle C. W.l.o.g. we can assume that C is directed. For every {vi, vj} ∈ E(G) we set eij to be the
number of arcs (x, y) in C such that x ∈ V (Gi) and y ∈ V (Gj) and similarly we set eji to be the number
of arcs (x, y) in C such that x ∈ V (Gj) and y ∈ V (Gi). Then, because C is a Hamiltonian cycle of H ,
this assignment of eij and eji satisfies the constrains (1)–(5), as required.

For the reverse direction, suppose that the ILP Hamiltonian Cycle is feasible and let β be an
assignment of the variables eij and eji witnessing this. Let G′ be the directed multigraph obtained
from G by replacing every edge {vi, vj} with β(eij) parallel arcs from vi to vj and β(eji) parallel arcs
from vj to vi. Because of the constrains (1), (4), and (5), it follows that G′ contains a directed eularian
tour T , i.e., a closed directed walk that visits all the arcs of G′ exactly once. Clearly, when fixing any
vertex of G′, the tour T defines an ordering of the arcs of G′. Let π be any such ordering of the arcs
of G′. For every 1 ≤ i ≤ n, let Pi = (P i

1, . . . , P
i
pi
) be a partition of Gi into pi disjoint paths, where

pi =
∑

j∈{ l : vl∈NG(vi) }
eij . Because of the constrains (2) and (3) we know that such a partition exists

for every 1 ≤ i ≤ n. For every arc a = (vi, vj) in T where a is the l-th arc leaving vi in T and a is
the l′-th arc entering vj in T (according to the ordering π), we denote by e(a) the edge of H from the

second endpoint of P i
l to the first endpoint of P j

l′ . Then the edges in { e(a) : a ∈ T } together with the
edges of all the path P 1

1 , . . . , P
n
pn

form a Hamiltonian cycle in H , as required.

Lemma 7. Given the graph G and the pairs (ham(G1), |V (G1)|), . . . , (ham(Gn), |V (Gn)|) it can be
decided whether the graph H has a Hamiltonian cycle in time O+(m2n + (2m)5m+o(m)n).

Proof. To decide whether the graph H has a Hamiltonian cycle we construct and solve the ILP Hamil-

tonian Cycle from Lemma 6. The running time of this algorithm is then the time it takes to con-
struct the ILP, i.e., O+(m2n), plus the time needed to solve the ILP, i.e., O+((2m)5m+o(m) log(m2n)) ∈
O+((2m)5m+o(m)n) using Proposition 4. This concludes the proof of the Lemma.

We are now ready to show Lemma 5.

Proof of Lemma 5. Clearly, |V (H)| =
∑

1≤i≤n |V (Gi)| so it remains to show how to compute ham(H).
Because of Proposition 8 ham(H) is equal to the minimum positive integer 1 ≤ l ≤ |V (H)| such that
the graph H ⊕ l has a Hamiltonian cycle. For every 1 ≤ l ≤ |V (H)| the graph H ⊕ l is equal to
the graph G′(G1, . . . , Gn, Il) where G′ is the graph obtained from G by adding one vertex vn+1 and
making it adjacent to all vertices of G, and the graph Il is the independent set on l vertices. Because
ham(Il) = |V (Il)| = l we can use Lemma 7 to decide whether the graph H ⊕ l has an Hamiltonian cycle
in time O(m′2n

′

+(2m′)5m
′+o(m′)n′) where n′ = n+1 and m′ = m+n. This concludes the proof of the

lemma.

6 Conclusion

We examined some of the algorithmic properties of modular-width, a natural structural parameter. Our
results indicate that this is a notion which may be worthy of further study independently of its more
famous cousin, clique-width, since it its decreased generality does offer some algorithmic pay-off.

As a direction for further research, it would be interesting to see if more problems which are hard for
clique-width (or even for treewidth) become tractable for modular-width. Two prime suspects in this
category are Edge Dominating Set and Partition into Triangles.

Beyond that, it would be interesting to investigate if the techniques of this paper can be further
generalized, perhaps eventually leading to meta-theorem-like results. In particular, our ILP-based so-
lution for Hamiltonicity may be applicable (with some modifications) to other problems. One may
ask: what properties must a problem possess for us to be able to give a straightforward DP algorithm
that uses ILPs to combine the tables?

13

The main property that a problem should satisfy for these ideas to apply is that the sets of partial
solutions arising in the dynamic programming formulation should be convex. Convexity is important
here, since we would like to be able to express the information contained in the DP tables using linear
constraints, in order to use an ILP. Convexity was easy to establish in the case of Partition into

Paths and similar problems, since the set of feasible partial solutions is the set of integers k such that
there exists a partition of a subgraph into k paths. If one knows the minimum feasible k, all larger
integers are also feasible and this is trivially a convex set. The question then becomes, are there any
other natural problems where convexity can be established (perhaps non-trivially) and used in this way?

References

[1] Stéphane Bessy, Christophe Paul, and Anthony Perez. Polynomial kernels for 3-leaf power graph
modification problems. Discrete Applied Mathematics, 158(16):1732–1744, 2010.

[2] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-exclusion.
SIAM J. Comput., 39(2):546–563, 2009.

[3] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1–2):1–22, 1993.

[4] Hans L. Bodlaender. The algorithmic theory of treewidth. Electronic Notes in Discrete Mathemat-
ics, 5:27–30, 2000.

[5] Hans L. Bodlaender. Treewidth: Characterizations, applications, and computations. In Fedor V.
Fomin, editor, Graph-Theoretic Concepts in Computer Science, 32nd International Workshop, WG
2006, Bergen, Norway, June 22-24, 2006, Revised Papers, volume 4271 of Lecture Notes in Com-
puter Science, pages 1–14. Springer, 2006.

[6] Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of bounded
treewidth. Comput. J., 51(3):255–269, 2008.

[7] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of graphs. Theor.
Comput. Sci., 412(39):5187–5204, 2011.

[8] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory of Computer Systems, 33(2):125–150, 2000.

[9] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer Verlag,
New York, 2nd edition, 2000.

[10] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. Fixed-parameter
tractability results for feedback set problems in tournaments. In Tiziana Calamoneri, Irene Finocchi,
and Giuseppe F. Italiano, editors, Algorithms and Complexity, 6th Italian Conference, CIAC 2006,
Rome, Italy, May 29-31, 2006, Proceedings, volume 3998 of Lecture Notes in Computer Science,
pages 320–331. Springer, 2006.

[11] Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated domination
and covering: A parameterized perspective. In Martin Grohe and Rolf Niedermeier, editors, Param-
eterized and Exact Computation, Third International Workshop, IWPEC 2008, Victoria, Canada,
May 14-16, 2008. Proceedings, volume 5018 of Lecture Notes in Computer Science, pages 78–90.
Springer, 2008.

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science.
Springer Verlag, New York, 1999.

[13] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful problems parameterized
by treewidth. Inf. Comput., 209(2):143–153, 2011.

14

[14] Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph layout problems parameterized by vertex cover. In Seok-Hee Hong, Hiroshi Nag-
amochi, and Takuro Fukunaga, editors, Algorithms and Computation, 19th International Sympo-
sium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008. Proceedings, volume 5369 of
Lecture Notes in Computer Science, pages 294–305. Springer, 2008.

[15] Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in Theoret-
ical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

[16] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Clique-width: on the
price of generality. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages
825–834. SIAM, 2009.

[17] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Algorithmic lower
bounds for problems parameterized with clique-width. In Moses Charikar, editor, Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, January 17-19, 2010, pages 493–502. SIAM, 2010.

[18] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of clique-
width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010.

[19] Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In Dániel Marx
and Peter Rossmanith, editors, Parameterized and Exact Computation - 6th International Sympo-
sium, IPEC 2011, Saarbrücken, Germany, September 6-8, 2011. Revised Selected Papers, volume
7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011.

[20] Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, Patrice Ossona de Mendez, and
Reshma Ramadurai. When trees grow low: Shrubs and fast mso1. In Branislav Rovan, Vladimiro
Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer Science 2012 -
37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings,
volume 7464 of Lecture Notes in Computer Science, pages 419–430. Springer, 2012.

[21] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review, 4(1):41–59, 2010.

[22] Sang il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100, 2005.

[23] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19–
37, 2012.

[24] Ross M. McConnell and Jeremy Spinrad. Modular decomposition and transitive orientation. Dis-
crete Mathematics, 201(1–3):189–241, 1999.

[25] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics
and its Applications. Oxford University Press, Oxford, 2006.

[26] Fábio Protti, Maise Dantas da Silva, and Jayme Luiz Szwarcfiter. Applying modular decomposition
to parameterized cluster editing problems. Theory of Computing Systems, 44(1):91–104, 2009.

[27] Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler linear-time modular
decomposition via recursive factorizing permutations. In Luca Aceto, Ivan Damg̊ard, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata,
Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July
7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, volume
5125 of Lecture Notes in Computer Science, pages 634–645. Springer, 2008.

15

