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Abstract. In d-Scattered Set we are given an (edge-weighted) graph
and are asked to select at least k vertices, so that the distance between
any pair is at least d, thus generalizing Independent Set. We provide
upper and lower bounds on the complexity of this problem with respect to
various standard graph parameters. In particular, we show the following:
– For any d ≥ 2, an O∗(dtw)-time algorithm, where tw is the treewidth

of the input graph.
– A tight SETH-based lower bound matching this algorithm’s perfor-

mance. These generalize known results for Independent Set.
– d-Scattered Set is W[1]-hard parameterized by vertex cover (for

edge-weighted graphs), or feedback vertex set (for unweighted graphs),
even if k is an additional parameter.

– A single-exponential algorithm parameterized by vertex cover for
unweighted graphs, complementing the above-mentioned hardness.

– A 2O(td2)-time algorithm parameterized by tree-depth (td), as well
as a matching ETH-based lower bound, both for unweighted graphs.

We complement these mostly negative results by providing an FPT
approximation scheme parameterized by treewidth. In particular, we
give an algorithm which, for any error parameter ε > 0, runs in time
O∗((tw/ε)O(tw)) and returns a d/(1 + ε)-scattered set of size k, if a d-
scattered set of the same size exists.

1 Introduction

In this paper we study the d-Scattered Set problem: given graph G = (V,E)
and a metric weight function w : E 7→ N+ that gives the length of each edge, we
are asked if there exists a set K of at least k selections from V , such that the
distance between any pair v, u ∈ K is at least d(v, u) ≥ d, where d(v, u) denotes
the shortest-path distance from v to u under weight function w. If w assigns
weight 1 to all edges, the variant is called unweighted.

The problem can already be seen to be hard, as it generalizes Independent
Set (for d = 2), even to approximate (under standard complexity assumptions),
i.e. the optimal k cannot be approximated to n1−ε in polynomial time [18],
while an alternative name is Distance-d Independent Set [13,28,12]. This
hardness prompts the analysis of the problem when the input graph is of restricted
structure, our aim being to provide a comprehensive account of the complexity of
d-Scattered Set through various upper and lower bound results. Our viewpoint
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is parameterized: we consider the well-known structural parameters treewidth tw,
tree-depth td, vertex cover number vc and feedback vertex set number fvs, that
comprehensively express the intended restrictions on the input graph’s structure
(as they range in size and applicability), while we examine both the edge-weighted
and unweighted variants of the problem.

Our contribution: First, in Section 3 we present a lower bound of (d− ε)tw ·nO(1)

on the complexity of any algorithm solving d-Scattered Set parameterized
by tw, based on the Strong Exponential Time Hypothesis (SETH [19,20]). This
result can be seen as a non-trivial extension of the bound of (2− ε)tw · nO(1) for
Independent Set ([25]) for larger values of d, for which the construction is
required to be much more compact in terms of encoded information per unit of
treewidth.

In Section 4 we provide a dynamic programming algorithm of running time
O∗(dtw), matching this lower bound, over a given tree decomposition of width tw.
The algorithm actually solves the counting version of d-Scattered Set, making
use of standard techniques (dynamic programming on tree decompositions),
with an application of the fast subset convolution technique of [2] (or state
changes [7,31]) to bring the running time down to match the size of the dynamic
programming tables.

Having thus identified the complexity of the problem with respect to tw,
we next focus on the more restrictive parameters vc and fvs and we show in
Section 5 that the edge-weighted d-Scattered Set problem parameterized
by vc + k is W[1]-hard. If, on the other hand, all edge-weights are set to 1,
then d-Scattered Set (the unweighted variant) parameterized by fvs + k is
W[1]-hard. Our reductions also imply lower bounds based on the Exponential
Time Hypothesis (ETH [19,20]), yet we do not believe these to be tight, due to
the quadratic increase in parameter size (as the construction’s focus lies on the
edges). One observation that can be made is that there are few cases where we
can expect to obtain an FPT algorithm for the problem without bounding the
value of d.

We complement these results with a single-exponential algorithm for the
unweighted variant, of running time O∗(3vc) for the case of even d, while for odd
d the running time is O∗(4vc). The algorithm is based on defining a sub-problem
based on a variant of Set Packing that we solve via dynamic programming. The
difference in running times, depending on the parity of d, is due to the number of
possible situations for a vertex with respect to potential candidates for selection.

Further, for the unweighted variant we also show in Section 7 the existence
of an algorithm parameterized by td of running time O∗(2O(td2)), as well as
a matching ETH-based lower bound. The upper bound follows from known
connections between the tree-depth of a graph and its diameter, while the lower
bound comes from a reduction from 3-SAT.

Finally, we turn again to tw in Section 8 and we present a fixed-parameter-
tractable approximation scheme (FPT-AS) of running time O∗((tw/ε)O(tw)) that
finds a d/(1 + ε)-scattered set of size k, if a d-scattered set of the same size exists.
The algorithm is based on a rounding technique introduced in [24] and can be much
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faster than any exact algorithm for the problem (for large d, i.e. d ≥ O(log n)),
even for the unweighted case and more restricted parameters. Figure 1 illustrates
the relationships between considered parameters and summarizes our results,
while we refer the reader to the full version [22] for all omitted definitions,
constructions and proofs (also in Appendices A and B).

Related work: Our work can be considered as a continuation of the investigations in
[21], where the (k, r)-Center problem is similarly studied with respect to several
well-known structural parameters and a number of fine-grained upper/lower
bounds is presented, while some of the techniques employed for our SETH lower
bound are also present in [8].

The SETH-based lower bound of (2− ε)tw · nO(1) on the running time of any
algorithm for Independent Set parameterized by tw comes from [25]. For d-
Scattered Set, Halldórsson et al. [17] showed a tight inapproximability ratio of
n1−ε for even d and n1/2−ε for odd d, while Eto et al. [13] showed that on r-regular
graphs the problem is APX-hard for r, d ≥ 3, while also providing polynomial-time
O(rd−1)-approximations and a polynomial-time approximation scheme (PTAS)
for planar graphs. For a class of graphs with at most a polynomial (in n) number
of minimal separators, d-Scattered Set can be solved in polynomial time for
even d, while it remains NP-hard on chordal graphs (contained in the class)
and any odd d ≥ 3 [28]. It remains NP-hard even for planar bipartite graphs of
maximum degree 3, while a 1.875-approximation is available on cubic graphs [14].
Several hardness results for planar and chordal (bipartite) graphs can be found in
[12], while [16] shows the problem admits an EPTAS on (apex)-minor-free graphs,
based on the theory of bidimensionality. Finally, on a related result, Marx and

Pilipczuk recently offered an nO(
√
k)-time algorithm for planar graphs, making

use of Voronoi diagrams and based on ideas previously used to obtain geometric
QPTASs [27].

tw, Treewidth: Tight SETH LB [Th. 1, 2], FPT-AS [Th. 7] (w/u)

fvs, Feedback Vertex Set: W[1]-hard [Cor. 1] (u)

pw, Pathwidth

td, Tree-depth: Tight ETH LB [Th. 5, 6] (u)

vc, Vertex Cover: W[1]-hard [Th. 3] (w), FPT [Th. 4] (u)

Fig. 1: Relationships between parameters and an overview of our results (with
theorem numbers, for weighted/unweighted variants). In the downwards direction
(from tw to vc) parameter size increases and algorithmic results are inherited,
while hardness results are inherited in the upwards direction.
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2 Definitions and Preliminaries

We use standard graph-theoretic notation. For a graph G = (V,E), n = |V |
denotes the number of vertices, m = |E| the number of edges, an edge e ∈ E
between u, v ∈ V is denoted by (u, v), and for a subset X ⊆ V , G[X] denotes
the graph induced by X. We use log(n) to denote the base-2 logarithm of
n, while log1+δ(n) is the logarithm base-(1 + δ), for δ > 0. Recall also that
log1+δ(n) = log(n)/ log(1 + δ). The functions bxc and dxe, for x ∈ R, denote the
maximum integer that is not larger and the minimum integer that is not smaller
than x, respectively. Further, we assume the reader has some familiarity with
standard definitions from parameterized complexity theory, such as the classes
FPT, W[1] (see [10,15,11]).

For a parameterized problem with parameter k, an FPT-AS is an algorithm
which for any ε > 0 runs in time O∗(f(k, 1ε )) (i.e. FPT time when parameterized
by k + 1

ε ) and produces a solution at most a multiplicative factor (1 + ε) from
the optimal (see [26]). We use O∗(·) to imply omission of factors polynomial in n.
In this paper we present approximation schemes with running times of the form
(log n/ε)O(k). These can be seen to imply an FPT running time by a well-known
win-win argument: If a parameterized problem with parameter k admits, for some
ε > 0, an algorithm running in time O∗((log n/ε)O(k)), then it also admits an
algorithm running in time O∗((k/ε)O(k)).

Treewidth and pathwidth are standard notions in parameterized complexity
that measure how close a graph is to being a tree or path ([3,4,23]). We will
also use the parameters vertex cover number and feedback vertex set number
of a graph G, which are the sizes of the minimum vertex set whose deletion
leaves the graph edgeless, or acyclic, respectively. Finally, we will consider the
related notion of tree-depth [29], which is defined as the minimum height of a
rooted forest whose completion (the graph obtained by connecting each node to
all its ancestors) contains the input graph as a subgraph. We will denote these
parameters for a graph G as tw(G),pw(G), vc(G), fvs(G), and td(G), and will
omit G if it is clear from the context. We recall the following well-known relations
([5,9]) between these parameters which justify the hierarchy given in Figure 1: For
any graph G we have tw(G) ≤ pw(G) ≤ td(G) ≤ vc(G), tw(G) ≤ fvs(G) ≤ vc(G).

We also recall here the two main complexity assumptions used in this paper
[19,20]. The Exponential Time Hypothesis (ETH) states that 3-SAT cannot be
solved in time 2o(n+m) on instances with n variables and m clauses. The Strong
Exponential Time Hypothesis (SETH) states that for all ε > 0, there exists an
integer q such that q-SAT (where q is the maximum size of any clause) cannot
be solved in time O((2− ε)n).

3 Treewidth: SETH Lower Bound

In this section we show that for any fixed d > 2, the existence of any
algorithm for the d-Scattered Set problem of running time O∗((d− ε)tw), for
some ε > 0, would imply the existence of some algorithm for q-SAT, of running
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time O∗((2− δ)n), for some δ > 0 and any q ≥ 3. First, let us briefly summarize
the reduction for the SETH lower bound of (2 − ε)tw for Independent Set
from [25]. The reduction is based on the construction of n paths (one for each
variable) on 2m vertices each, conceptually divided into m pairs of vertices (one
for each clause), with each vertex signifying assignment of value 0 or 1 to the
corresponding variable. A gadget is introduced for each clause, connected to the
vertex of some path that signifies the assignment to the corresponding variable
that would satisfy the clause. The pathwidth of the constructed graph (and thus
also its treewidth) is (roughly) equal to the number of paths and thus a direct
correspondence between a satisfying assignment and an independent set can be
established, meaning an O∗((2 − ε)tw)-time algorithm for Independent Set
would imply an O∗((2− ε)n)-time algorithm for SAT, for any ε > 0.

Intuitively, the reduction for Independent Set needs to “embed” the 2n

possible variable assignments into the 2tw states of some optimal dynamic program
for the problem, while in our lower bound construction for d-Scattered Set we
need to be able to encode these 2n assignments by dtw states and thus there can
be no one-to-one correspondence between a variable and only one vertex in some
bag of the tree decomposition (that the optimal dynamic program might assign
states to); instead, every vertex included in some bag must carry information
about the assignment for a group of variables. Furthermore, as now d > 2, in
order to make the converse direction of our reduction to work, we need to make
our paths sufficiently long to ensure that any solution will eventually settle
into a pattern that encodes a consistent assignment, as the optimal d-scattered
set may “cheat” by not selecting the same vertex from each part of some long
path (periodically), a situation that would imply a different assignment for the
appearances of the same variable for two different clauses (see also [8] and the
SETH-based lower bound for Dominating Set from [25]).

Clause gadget Ĉ: We first describe the construction of our clause gadget Ĉ: this
gadget has N input vertices and its purpose is to only allow for selection of one
of these in any d-scattered set, along with another, standard selection. Given

vertices v1, . . . , vN , we first make N paths Ai = (a1i , . . . , a
bd/2c−1
i ),∀i ∈ [1, N ] on

bd/2c − 1 vertices. We connect vertices a1i to inputs vi, while only for even d, we

also make all vertices a
bd/2c−1
i into a clique (all other endpoints of each path).

We then make a path B = (b1, . . . , bdd/2e+1) and we connect its endpoint bdd/2e+1

to all a
bd/2c−1
i . Figure 2 provides an illustration. Observe that any d-scattered

set can only include one of the input vertices (as the distance between them is
d− 1) and the vertex b1, being the only option at distance d from all inputs.

Construction: We will describe the construction of a graph G, given some
ε < 1, q ≥ 3, d > 2 and an instance φ of q-SAT with n variables, m clauses and
at most q variables per clause. We first choose an integer p = d 1

(1−λ) log2(d)
e, for

λ = logd(d− ε) < 1 (i.e. p depends only on d and ε) and then group the variables
of φ into t = dnγ e groups F1, . . . , Ft, for γ = blog2(d)pc, being also the maximum
size of any such group.



6

v1 vN

a11

a
bd/2c−1
1 a

bd/2c−1
N

b1

bdd/2e+1

Fig. 2: A general picture of the clause gadget Ĉ for even and odd d. Note the box
indicating vertices forming a clique for the case of even d.

For each group Fτ of variables of φ, with τ ∈ [1, t], we make a simple gadget
Ĝ1
τ that consists of p paths P lτ = (pl1, . . . , p

l
d) on d vertices each, for l ∈ [1, p]. We

then make m(tp(d− 1) + 1) copies of this “column” of t gadgets Ĝ1
1, . . . , Ĝ

1
t (i.e.

t vertically arranged gadgets), that we connect horizontally (so that we have tp
“long paths”): we connect each last vertex pld from a gadget Ĝjτ to vertex pl1 from

the following gadget Ĝj+1
τ , for all l ∈ [1, p], τ ∈ [1, t] and j ∈ [1,m(tp(d − 1))]

(see Figure 3 (b) for an example).

Next, for every clause Cµ, with µ ∈ [1,m], we make tp(d− 1) + 1 copies of

the clause gadget Ĉj , for j ∈ [1,m(tp(d− 1) + 1)], where for each µ ∈ [1,m], the
number of inputs in the tp(d−1)+1 copies is N = qµd

p/2, where qµ is the number
of literals in clause Cµ. One clause is assigned to each column of gadgets, so that
the first m columns correspond to one clause each, with tp(d− 1) + 1 repetitions
of this pattern giving the complete association. Then, for every τ ∈ [1, t] we
associate a set Sτ ⊂

⋃
l∈[1,p] P

l
τ , that contains exactly one vertex from each of

the p paths in Ĝjτ , with an assignment to the variables in group Fτ . As there are
at most 2γ = 2blog2(d)

pc assignments to the variables in Fτ and dp ≥ 2γ such sets
Sτ , the association can be unique for each τ (i.e. for each row of gadgets). Now,
for every literal appearing in clause Cµ, exactly half of the partial assignments to
the group Fτ in which the literal’s variable appears will satisfy it and thus, each
of the qµd

p/2 input vertices of the clause gadget will correspond to one literal
and one assignment to the variables of the group that satisfy it.

Let v be an input vertex of a clause gadget Ĉj , corresponding to a literal
of clause Cµ that is satisfied by a partial assignment to the variables of group
Fτ that is associated with set Sτ ⊂

⋃
l∈[1,p] P

l
τ , containing exactly one vertex

from each path P lτ , l ∈ [1, p], from gadget Ĝjτ . For even d, we then make a path
w1, . . . , wd/2−1 on d/2− 1 vertices, connecting vertex w1 to v and for each vertex

pli /∈ S of each path P lτ ∈ Ĝjτ we also make a path y1, . . . , yd/2−1 on d/2 − 1

vertices, attaching endpoint y1 to its corresponding path vertex pli, while the
other endpoints yd/2−1 are all attached to vertex wd/2−1 and to each other (into
a clique). For odd d, we make a similar construction for each such v, only the
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number of vertices in constructed paths is now bd/2c instead of d/2 − 1 and
vertices ybd/2c are not made into a clique. Thus every input vertex v of some
clause gadget is at distance exactly d− 1 from every path vertex that does not
belong to the set associated with its corresponding partial assignment (and thus
exactly d from the only vertex per path that is), while the distances between
any pair of other (i.e. intermediate) vertices via these paths are ≤ d− 1. This
concludes our construction, while Figure 3 provides illustrations of the above.

In this way, a satisfying assignment for φ would correspond to a d-scattered
set that selects the vertices in each gadget Ĝτ that match the partial assignment
Sτ for that group’s variables Fτ in all m(tp(d− 1) + 1) columns, along with the
corresponding input vertex from each clause gadget (implying the existence of a
satisfied literal within the clause). On the other hand, for any d-scattered set of
size (tp+ 2)m(tp(d− 1) + 1) in G, the maximum number of times it can “cheat”
by not periodically selecting the “same” vertices in each column is tp(d− 1). The
number of columns being m(tp(d − 1) + 1), by the pigeonhole principle, there
will always exist m consecutive columns for which the selection pattern does not
change, from which a consistent assignment for all clauses can be extracted.

p11 p1d

ppd
p

y1

yd/2−1

wd/2−1

w1
v

Ĉ

Ĝ

(a)

Ĝ1
1

Ĝ1
t

p11 p1d

pp1

Ĉmo+π

m(tp(d− 1) + 1)

p

t

(b)

Fig. 3: (a): The connection of an input vertex v of a clause gadget Ĉ to its
corresponding path vertices in some Ĝ, where vertices of set Sτ are circled and
boxed vertices form a clique (for even d). (b): A simplified picture of the global
construction, with some exemplative connecting paths between clause gadgets
and path vertices shown as edges.

Theorem 1. For any fixed d > 2, if d-Scattered Set can be solved in O∗((d−
ε)tw(G)) time for some ε > 0, then there exists some δ > 0, such that q-SAT can
be solved in O∗((2− δ)n) time, for any q ≥ 3.
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4 Treewidth: Dynamic Programming Algorithm

In this section we present an O∗(dtw)-time dynamic programming algorithm
for the counting version of the d-Scattered Set problem. The input is a graph
G = (V,E), a nice tree decomposition (X , T ) for G, where T = (I, F ) is a tree
and X = {Xi|i ∈ I} is the set of bags, while maxi∈i |Xi| − 1 = tw, along with
two numbers k ∈ N+, d ≥ 2, while the output is the number of d-scattered sets
of size k in G.

There is a table Di associated with every node i of the tree decomposition with
Xi = {v0, . . . , vt}, while each table entry Di[κ, s0, . . . , st] contains the number of
(distinct) d-scattered sets K of size |K| = κ (its partial solution) and is indexed
by a number κ ∈ [1, k] and a t+ 1-sized tuple (s0, . . . , st) of state-configurations,
assigning a state sj ∈ [0, d− 1] to each vertex vj in the bag. There are d possible
states for each vertex, designating its distance to the closest selection for the
d-scattered set at the “current” stage of the algorithm (i.e. within the graph
defined by each node of the tree decomposition), with vertices of zero state sj = 0
being included in K, vertices of low state sj ∈ [1, bd/2c] being at distance at least
sj from their closest selection and d− sj from the second closest, while vertices
of high state sj ∈ [bd/2c+ 1, d− 1] are at distance at least sj from K. That is,
each partial solution is described by a given budget for selections (up to k) and
the minimum distances of all vertices in the bag to an already selected vertex.

Based on this scheme, the inductive computations for each type of node of the
nice tree decomposition are straightforward to obtain, yet a direct implementation
would not lead to an algorithm of running time that matches the size of the
constructed tables (dtw): using the above state-representation, the computations
at a join node would require an additional 2tw factor, as this is the number of
possible combinations of previously computed partial solutions (from the tables
of its children) that could be combined to give a partial solution for the new
node. This can be avoided by an application of the state changing technique (or
fast subset convolution, see [2,7,31] and Chapter 11 from [10]), for which it is
also more convenient to count the number of solutions of each size κ ∈ [1, k],
instead of computing the maximum k for which a solution satisfying the given
state-configuration exists.

Theorem 2. Given graph G, along with d ∈ N+ and nice tree decomposition
(X , T ) of width tw for G, there exists an algorithm to solve the counting version
of the d-Scattered Set problem in O∗(dtw) time.

5 Vertex Cover, Feedback Vertex Set: W[1]-Hardness

In this section we show that the edge-weighted variant of the d-Scattered
Set problem parameterized by vc + k is W[1]-hard via a reduction from k-
Multicolored independent Set, a well-known W[1]-complete problem (see
[10]: given a graph G = (V,E), with V partitioned into k cliques V = V1]· · ·]Vk,
|Vi| = n, ∀i ∈ [1, k], we are asked to find a subset S ⊆ V , such that G[S] forms
an independent set and |S ∩ Vi| = 1,∀i ∈ [1, k].
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Construction: Given an instance [G = (V,E), k] of k-Multicolored inde-
pendent Set, we construct an instance [G′ = (V ′, E′), k′] of edge-weighted
d-Scattered Set where d = 6n. First, for every color class Vi ⊆ V we create
a set Pi ⊆ V ′ of n vertices pil,∀l ∈ [1, n],∀i ∈ [1, k] (that directly correspond
to the vertices of Vi). Next, for each i ∈ [1, k] we make a pair of vertices ai, bi,
connecting ai to each vertex pil by an edge of weight n+ l, while bi is connected
to each vertex pil by an edge of weight 2n− l. Next, for every non-edge e ∈ Ē (i.e.
Ē contains all pairs of vertices from V that are not connected by an edge from
E) between two vertices from different Vi1 , Vi2 (with i1 6= i2), we make a vertex
ue that we connect to vertices ai1 , bi1 and ai2 , bi2 . We set the weights of these
edges as follows: suppose that e is a non-edge between the j1-th vertex of Vi1 and
the j2-th vertex of Vi2 . We then set w(ue, ai1) = 5n − j1, w(ue, bi1) = 4n + j1
and w(ue, ai2) = 5n− j2, w(ue, bi2) = 4n+ j2. Next, for every pair of i1, i2 we
make two vertices gi1,i2 , g′i1,i2 . We connect gi1,i2 to all vertices ue that correspond
to non-edges e between vertices of the same pair Vi1 , Vi2 by edges of weight
(6n− 1)/2 and also gi1,i2 to g′i1,i2 by an edge of weight (6n+ 1)/2. In this way,
a k-multicolored independent set in G corresponds to a 6n-scattered set in G′

of size k2. This concludes the construction of G′, with Figure 4 providing an
illustration.

P1 Pi Pk

ai bi

pin

pi1
n+ 1

2n

n+ l

n

2n− 1
2n− l

4n+ l5n− l
6n−1

2
g1,i

g′1,i

ue

6n+1
2

Fig. 4: A general picture of graph G′, where the circled vertex is pil and dotted
lines match weights to edges.

Theorem 3. The edge-weighted d-Scattered Set problem is W[1]-hard pa-
rameterized by vc + k. Furthermore, if there is an algorithm for edge-weighted

d-Scattered Set running in time no(
√
vc+
√
k) then the ETH is false.

Using essentially the same reduction (with minor modifications) we also obtain
similar hardness results for unweighted d-Scattered Set parameterized by fvs:
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Corollary 1. The unweighted d-Scattered Set problem is W[1]-hard param-
eterized by fvs + k. Furthermore, if there is an algorithm for unweighted d-

Scattered Set running in time no(fvs+
√
k) then the ETH is false.

6 Vertex Cover: FPT Algorithm

We next show that unweighted d-Scattered Set admits an FPT algorithm,
in contrast to its weighted version (Theorem 3). Given graph G along with a
vertex cover C of G and d ≥ 3, our algorithm first defines an instance of Partial
Set Packing, where elements may be partially included in some sets and then
solves the problem by dynamic programming. In this variant, any element has a
coefficient of inclusion in each set and a collection of sets is a solution if there is
no pair of sets for which the sum of any element’s coefficients is > 1.

We make a set for each vertex and an element for each vertex of C. Our
aim is to identify two vertices (sets) as incompatible selections if there is some
third “middle” vertex from C (elements), whose sum of distances to the other
two is < d, based on the observation that for any vertex not belonging to the
d-scattered set, only one selection can be at distance < d/2, yet any number of
selections can be at distance ≥ d/2 (consider a star as an example).

These coefficients of inclusion are then used to assign vertices of C to their
closest possible selections, with complete inclusion (i.e. coefficient equal to 1)
implying the distance is < d/2 and no inclusion (equal to 0) that it is > d/2.
For the middle vertices, depending on the parity of d (and causing the difference
in running times), we require either one (i.e. 1/2) or two (1/3 and 2/3) extra
coefficients to be able to determine the exact position of a possible middle vertex
from C (element) on the path between two potential selections (sets). If the sum
of coefficients is ≤ 1, the vertex from C is either a middle vertex on the path
between the two selections or at distance < d/2 from only one of them. On the
other hand, if the sum of coefficients is > 1, then the sum of distances from the
vertex to the two selections is < d and the incompatibility of the sets implies the
corresponding vertices cannot both belong in the d-scattered set.

Theorem 4. Given graph G, along with d > 2 and a vertex cover of size vc of
G, there exists an algorithm solving the unweighted d-Scattered Set problem
in O∗(3vc) time for even d and O∗(4vc) time for odd d.

7 Tree-depth: Tight ETH Lower Bound

In this section we consider the unweighted version of the d-Scattered Set
problem parameterized by td. We first show the existence of an FPT algorithm of
running time O∗(2O(td2)) and then a tight ETH-based lower bound. We begin with
a simple upper bound argument, making use of the following fact on tree-depth,
while the algorithm then follows from the dynamic programming procedure of
Theorem 2 and the relationship between d, td and tw:
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Lemma 1. For any graph G = (V,E) we have D(G) ≤ 2td+1 − 2, where D(G)
denotes the graph’s diameter.

Theorem 5. Unweighted d-Scattered Set can be solved in time O∗(2O(td2)).

Next we show a lower bound matching Theorem 5, based on the ETH, using
a reduction from 3-SAT and a construction similar to the one used in Section 5.

Theorem 6. If unweighted d-Scattered Set can be solved in 2o(td
2) · nO(1)

time, then 3-SAT can be solved in 2o(n) time.

8 Treewidth Revisited: FPT-AS

In this section we present an FPT approximation scheme (FPT-AS) for
d-Scattered Set parameterized by tw. Given as input an edge-weighted graph
G = (V,E), k ∈ N+, d ≥ 2 and an arbitrarily small error parameter ε > 0, our
algorithm is able to return a set K, such that any v, u ∈ K are at distance
d(v, u) ≥ d

1+ε , in time O∗((tw/ε)O(tw)), if G has a d-scattered set of size |K|.
Our algorithm makes use of a technique introduced in [24] (see also [1,21])

for approximating problems that are W-hard by treewidth. If the hardness of the
problem arises from the need of the dynamic programming table to store tw large
numbers (in our case, the distances of the vertices in the bag from the closest
selection), we can significantly speed up the algorithm by replacing all values
by the closest integer power of (1 + δ), for some appropriately chosen δ, thus
reducing the table size from dtw to (log(1+δ) d)tw. Of course, the calculations may
result in values that are not integer powers of (1 + δ) that will thus have to be
“rounded” to maintain the table size. This might introduce the accumulation of
rounding errors, yet we are able to show that the error on any rounded value can
be bounded by a function of the height of its corresponding bag and then make
use of a theorem from [6] stating that any tree decomposition can be balanced so
that its width remains almost unchanged and its total height becomes O(log n).

The rounding technique as applied in [24] employs randomization and an
extensive analysis to procure the bounds on the propagation of error, while we
only require a deterministic adaptation of the rounding process without making
use of the advanced machinery there introduced, as for our particular case, the
bound on the rounding error can be straightforwardly obtained. The main tool
we require is the following definition of an addition-rounding operation, denoted
by ⊕: for two non-negative numbers x1, x2, we define x1⊕x2 := 0, if x1 = x2 = 0.
Otherwise, we set x1 ⊕ x2 := (1 + δ)blog(1+δ)(x1+x2)c.

The integers we would like to approximately store are the states sj ∈ [1, d−1],
representing the distance of a vertex vj in bag Xi of the tree decomposition to
the closest selection in the d-scattered set K, during computation of the dynamic
programming algorithm. Let Σδ := {0} ∪ {(1 + δ)l|l ∈ N}. Intuitively, Σδ is the
set of rounded states that our modified algorithm may use. Of course, Σδ as
defined is infinite, but we will only consider the set of values that are at most
d, denoted by Σd

δ . In this way, the size of Σd
δ is reduced to log(1+δ)(d), that for
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δ = ε
O(logn) , gives |Σd

δ | = O(log(d) log(n)/ε) and we then rely on the well-known

win-win parameterized argument given in Section 2 to get a running time of
O∗((tw/ε)O(tw)).

Modifications: First, we make use of an adaptation of the algorithm of Theorem
2 that works for the maximization version of the problem (albeit not optimally).
We next explain the necessary modifications to the exact algorithm for use of
the rounded states σ ∈ Σd

δ . Consider a node i introducing vertex vt+1: for a
new entry to describe a proper extension to some previously computed partial
solution, if the new vertex is of state st+1 ∈ [1, d − 1] in the new entry, then
there must be some vertex vj ∈ Xi, such that st+1 ≤ d(vt+1, vj) + sj (the one for
which this sum is minimized), i.e. we require that the new state of the introduced
vertex matches its distance to some other vertex in the bag plus the state of that
vertex (being the one “responsible” for connecting vt+1 to the partial solution).
The rounded state σt+1 for vt+1 must now satisfy: σt+1 ≤ d(vt+1, vj)⊕σj , where
⊕ is the operator defined above. Further, we define the symmetrical (around d/2)
state σ̄ for a given low state σ as the minimum state σ′ for which σ + σ′ ≥ d

(1+ε)

and we arbitrarily choose the computed states for the table of one of the children
nodes to represent the new entries and σ̄ to identify the symmetrical of each low
state (from the other node’s table).

Moreover, we require that the tree decompositions on which our algorithm is
to be applied are rooted and of maximum depth O(log n). In [6] (Lemma 1), it
is shown that any tree decomposition of width tw can be converted to a rooted
and binary tree decomposition of depth O(log n) and width at most 3tw + 2 in
O(log n) time and O(n) space. The following lemma employs the transformation
to bound the error of any value calculated in this way, based on an appropriate
choice of δ and therefore set Σd

δ of available values, by relating the rounded states
σ computed at any node to the states s that the exact algorithm would use at
the same node instead.

Lemma 2. Given ε and a tree decomposition (X , T ) with T = (I, F ),X =
{Xi|i ∈ I}, where T is rooted, binary and of depth O(log n), there exists a constant
C, such that for all rounded states σj ∈ Σd

δ it is σj ≥ sj
(1+ε) ,∀vj ∈ Xi,∀i ∈ I,

where δ = ε
C logn .

Theorem 7. There is an algorithm which, given an edge-weighted instance of d-
Scattered Set [G, k, d], a tree decomposition of G of width tw and a parameter
ε > 0, runs in time O∗((tw/ε)O(tw)) and finds a d/(1 + ε)-scattered set of size k,
if a d-scattered set of the same size exists in G.
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A Omitted Definitions

Lemma 3. If a parameterized problem with parameter k admits, for some ε > 0,
an algorithm running in time O∗((log n/ε)O(k)), then it also admits an algorithm
running in time O∗((k/ε)O(k)).

Proof. We consider two cases: if k ≤ √log n then (log n/ε)O(k) = (1/ε)O(k)(log n)O(
√
logn) =

O∗((1/ε)O(k)). If on the other hand, k >
√

log n we have log n ≤ k2, soO∗((log n/ε)O(k)) =
O∗((k/ε)O(k)). ut

A tree decomposition of a graph G = (V,E) is a pair (X , T ) with T = (I, F )
a tree and X = {Xi|i ∈ I} a family of subsets of V (called bags), one for
each node of T , with the following properties: 1)

⋃
i∈I Xi = V ; 2) for all edges

(v, w) ∈ E, there exists an i ∈ I with v, w ∈ Xi; 3) for all i, j, k ∈ I, if j is on the
path from i to k in T , then Xi ∩Xk ⊆ Xj . The width of a tree decomposition
((I, F ), {Xi|i ∈ I}) is maxi∈I |Xi|−1. The treewidth of a graph G is the minimum
width over all tree decompositions of G, denoted by tw(G).

Moreover, for rooted T , let Gi = (Vi, Ei) denote the terminal subgraph defined
by node i ∈ I, i.e. the induced subgraph of G on all vertices in bag i and its
descendants in T . Also let Ni(v) denote the neighborhood of vertex v in Gi and
di(u, v) denote the distance between vertices u and v in Gi, while d(u, v) (absence
of subscript) is the distance in G.

In addition, a tree decomposition can be converted to a nice tree decomposition
of the same width (in O(tw2 · n) time and with O(tw · n) nodes): the tree here is
rooted and binary, while nodes can be of four types: a) Leaf nodes i are leaves of
T and have |Xi| = 1; b) Introduce nodes i have one child j with Xi = Xj ∪ {v}
for some vertex v ∈ V and are said to introduce v; c) Forget nodes i have one
child j with Xi = Xj \{v} for some vertex v ∈ V and are said to forget v; d) Join
nodes i have two children denoted by i− 1 and i− 2, with Xi = Xi−1 = Xi−2.
Nice tree decompositions were introduced by Kloks in [23] and using them does
not in general give any additional algorithmic possibilities, yet algorithm design
becomes considerably easier.

Lemma 4. [5,9] For any graph G we have tw(G) ≤ pw(G) ≤ td(G) ≤ vc(G),
tw(G) ≤ fvs(G) ≤ vc(G).

Additionally, we will require the equivalent definition of pathwidth via the
mixed search number ms(G). In a mixed search game, a graph G is considered as
a system of tunnels. Initially, all edges are contaminated by a gas and an edge is
cleared by placing searchers at both its endpoints simultaneously or by sliding a
searcher along the edge. A cleared edge is re-contaminated if there is a path from
a contaminated edge to the cleared edge without any searchers on its vertices or
edges. A search is a sequence of operations that can be of the following types: (a)
placement of a new searcher on a vertex; (b) removal of a searcher from a vertex;
(c) sliding a searcher on a vertex along an incident edge and placing the searcher
on the other end. A search strategy is winning if after its termination all edges
are cleared. The mixed search number of G, denoted by ms(G), is the minimum
number of searchers required for a winning strategy of mixed searching on G.
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Lemma 5. [30] For a graph G, it is pw(G) ≤ ms(G) ≤ pw(G) + 1.

The Set Packing problem is defined as follows: given an integer k, a universe
U = {u1, . . . , un} of elements and a family S = {S1, . . . , Sm} of subsets of U ,
is there a subfamily S ⊆ S of subsets (a packing), such that all sets in S are
pairwise disjoint, and the size of the packing is |S| ≥ k?

Finally, k-Multicolored Independent Set is a well-known W[1]-complete
problem (see [10]) and is defined as follows: we are given a graph G = (V,E),
with V partitioned into k cliques V = V1 ] · · · ] Vk, |Vi| = n,∀i ∈ [1, k], and
are asked to find a subset S ⊆ V , such that G[S] forms an independent set and
|S ∩ Vi| = 1,∀i ∈ [1, k].

B Omitted proofs

From Section 3, Treewidth: SETH Lower Bound

Clause gadget Ĉ: We first describe the construction of our clause gadget Ĉ: this
gadget has N input vertices and its purpose is to only allow for selection of one
of these in any d-scattered set, along with another, standard selection. Given

vertices v1, . . . , vN , we first make N paths Ai = (a1i , . . . , a
bd/2c−1
i ),∀i ∈ [1, N ] on

bd/2c − 1 vertices. We connect vertices a1i to inputs vi, while only for even d, we

also make all vertices a
bd/2c−1
i into a clique (all other endpoints of each path).

We then make a path B = (b1, . . . , bdd/2e+1) and we connect its endpoint bdd/2e+1

to all a
bd/2c−1
i . This concludes the construction of clause gadget Ĉ, while Figure

5 provides an illustration. Observe that any d-scattered set can only include one
of the input vertices (as the distance between them is d− 1) and the vertex b1,
being the only option at distance d from all inputs.

v1 vN

a11

a
bd/2c−1
1 a

bd/2c−1
N

b1

bdd/2e+1

Fig. 5: A general picture of the clause gadget Ĉ for even and odd d. Note the box
indicating vertices forming a clique for the case of even d.



17

Construction: We will describe the construction of a graph G, given some ε < 1
and an instance φ of q-SAT with n variables, m clauses and at most q variables
per clause. We first choose an integer p ≥ 1

(1−λ) log2(d)
, for λ = logd(d− ε) < 1,

for reasons that become apparent in the proof of Theorem 1. Note that for the
results of this section, d, q and p are considered constants. We then group the
variables of φ into t = dnγ e groups F1, . . . , Ft, for γ = blog2(d)pc, being also the
maximum size of any such group.

Next, for each group Fτ of variables of φ, with τ ∈ [1, t], we make a simple
gadget Ĝ1

τ that consists of p paths P lτ = (pl1, . . . , p
l
d) on d vertices each, for

l ∈ [1, p]. We then make m(tp(d− 1) + 1) copies of this “column” of t gadgets
Ĝ1

1, . . . , Ĝ
1
t , that we connect horizontally (so that we have tp “long paths”): we

connect each last vertex pld from a gadget Ĝjτ to vertex pl1 from the following

gadget Ĝj+1
τ , for all l ∈ [1, p], τ ∈ [1, t] and j ∈ [1,m(tp(d− 1))].

Next, for every clause Cµ, with µ ∈ [1,m], we make tp(d− 1) + 1 copies of

the clause gadget Ĉj , for j ∈ [1,m(tp(d− 1) + 1)], where for each µ ∈ [1,m], the
number of inputs in the tp(d−1)+1 copies is N = qµd

p/2, where qµ is the number
of literals in clause Cµ. One clause is assigned to each column of gadgets, so that
the first m columns correspond to one clause each, with tp(d− 1) + 1 repetitions
of this pattern giving the complete association. Then, for every τ ∈ [1, t] we
associate a set Sτ ⊂

⋃
l∈[1,p] P

l
τ , that contains exactly one vertex from each of

the p paths in Ĝjτ , with an assignment to the variables in group Fτ . As there are
at most 2γ = 2blog2(d)

pc assignments to the variables in Fτ and dp ≥ 2γ such sets
Sτ , the association can be unique for each τ . Now, for every literal appearing in
clause Cµ, exactly half of the partial assignments to the group Fτ that contains
the literal’s variable will satisfy it and thus, each of the qµd

p/2 input vertices
of the clause gadget will correspond to one literal and one assignment to the
variables of the group that satisfy it.

Let v be an input vertex of a clause gadget Ĉj , corresponding to a literal
of clause Cµ that is satisfied by a partial assignment to the variables of group
Fτ that is associated with set Sτ ⊂

⋃
l∈[1,p] P

l
τ , containing exactly one vertex

from each path P lτ , l ∈ [1, p], from gadget Ĝjτ . For even d, we then make a path
w1, . . . , wd/2−1 on d/2− 1 vertices, connecting vertex w1 to v and for each vertex

pli /∈ S of each path P lτ ∈ Ĝjτ we also make a path y1, . . . , yd/2−1 on d/2 − 1

vertices, attaching endpoint y1 to its corresponding path vertex pli, while the
other endpoints yd/2−1 are all attached to vertex wd/2−1 and to each other (into
a clique). For odd d, we make a similar construction for each such v, only the
number of vertices in constructed paths is now bd/2c instead of d/2 − 1 and
vertices ybd/2c are not made into a clique. In this way, every input vertex v of
some clause gadget is at distance exactly d − 1 from every path vertex that
does not belong to the set associated with its corresponding partial assignment
(and thus exactly d from the only vertex per path that is), while the distances
between any intermediate vertices via these paths are ≤ d− 1. This concludes
our construction, while Figure 6 provides illustrations of the above.
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p11 p1d

ppd
p

y1

yd/2−1

wd/2−1

w1
v

Ĉ

Ĝ

(a)

Ĝ1
1

Ĝ1
t

p11 p1d

pp1

Ĉmo+π

m(tp(d− 1) + 1)

p

t

(b)

Fig. 6: (a): The connection of an input vertex v of some clause gadget Ĉ to its
corresponding path vertices in some Ĝ, where vertices of set Sτ are circled and
boxed vertices form a clique (for even d). (b): A simplified picture of the global
construction, with some exemplative connecting paths between clause gadgets
and path vertices shown as edges.

Lemma 6. If φ has a satisfying assignment, then G has a d-scattered set of size
(tp+ 2)m(tp(d− 1) + 1).

Proof. Given a satisfying assignment for φ, we will show the existence of a d-
scattered set K of G of size |K| = (tp+ 2)m(tp(d− 1) + 1). Set K will include
one vertex from each of the p paths in each gadget Ĝjτ , with τ ∈ [1, t], j ∈
[1,m(tp(d− 1) + 1)] and two vertices from each clause gadget Ĉj . In particular,
for each group Fτ of variables we consider the restriction of the assignment for φ
to these variables and identify the set Sτ associated with this partial assignment,
adding all vertices of Sτ from each Ĝjτ into set K. Then, for each clause Cµ,
we identify one satisfied literal (which must exist as the assignment for φ is
satisfying) and the vertex v that corresponds to that literal and the partial
assignment associated with set Sτ selected from the group of paths P lτ , l ∈ [1, p]
within gadget Ĝjτ , for group Fτ , in which that literal’s variable appears in. We
add to K every such vertex v and also vertex b1 from each clause gadget Ĉj , for
all j ∈ [1,m(tp(d− 1) + 1)], thus completing the selection and what remains is
to show that K is indeed a d-scattered set of G.

To that end, observe that the pattern of our p ·m(tp(d− 1) + 1) selections
of all vertices from every set Sτ for each τ ∈ [1, t] is repeating: we have selected
every d-th vertex from each “long path”, since the association between sets Sτ
and partial assignments for Fτ is the same of each τ . Thus on each of the tp long
paths, every selected vertex is at distance exactly d both from its predecessor and
its follower. Furthermore, for each clause gadget Ĉj , with j ∈ [1,m(tp(d−1)+1)],
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selected vertices v and b1 are at distance exactly d via the gadget, while vertex v
is at distance exactly d from each selected pli ∈ Sτ from each path P lτ , l ∈ [1, p],
as there are only paths of length d− 1 from v to the neighbors pli−1, p

l
i+1 of the

selected vertex from each path. Finally, observe that the distance between vertices
on different paths P lτ (and thus possible selections) via the paths attached to
some input vertex is always ≥ 2d− 2. ut

Lemma 7. If G has a d-scattered set of size (tp + 2)m(tp(d − 1) + 1), then φ
has a satisfying assignment.

Proof. Given a d-scattered set K of G of size |K| = (tp + 2)m(tp(d − 1) + 1),
we will show the existence of a satisfying assignment for φ. First, observe that
from each gadget Ĝjτ , for τ ∈ [1, t], j ∈ [1,m(tp(d− 1) + 1)], at most p vertices
can be selected, one from each path P lτ , l ∈ [1, p] within each gadget. This leaves
2 vertices to be selected from each column j ∈ [1,m(tp(d− 1) + 1)] of gadgets.
As the distances between some input vertex v and some path vertex pli is equal
to d only if the path vertex belongs to the set Sτ associated with the partial
assignment to the variables of Fτ that would satisfy the literal (whose variable
belongs to Fτ ) corresponding to the input vertex v and d− 1 otherwise, while the
distances between any pair of input vertices are d− 1 via the gadget with only
vertex b1 at distance exactly d from each input vertex, it is not hard to see that
the only option is to select each vertex b1 and one input vertex from each gadget
Ĉj , for j ∈ [1,m(tp(d − 1) + 1)]: no path vertex pli could be selected with any
vertex on the paths attached to some input vertex v, while no other vertex but
b1 could be selected with some input vertex of each clause gadget. Furthermore,
the selection of an input vertex v must also be in agreement with each selection
from the p paths to which v is connected to (via the paths of length d− 1), i.e.
the selected vertices from each path must be exactly the set Sτ that is associated
with the partial assignment that satisfies the literal corresponding with v.

Next, we require that there exists at least one o ∈ [0, tp(d − 1)] for every
τ ∈ [1, t] for which K ∩ {⋃l∈[1,p] P lτ} is the same in all gadgets Ĝmo+πτ with

π ∈ [1,m], i.e. that there exist m successive copies of the gadget for which the
pattern of selection of vertices from paths P lτ does not change. As noted above,
set K must contain one vertex from each such path in each gadget, while the
distance between any two successive selections (on the same “long path”) must
be at least d. Now, depending on the starting selection, observe that the pattern
can “shift towards the right” at most d− 1 times, without affecting whether the
total number of selections is exactly m(tp(d− 1) + 1) from each “long path”: the
first vertex of a path can be selected within a gadget, the second vertex can be
selected from its follower, the third from the one following it and so on. For each
l ∈ [1, p], this can happen at most d − 1 times, thus at most p(d − 1) for each
τ ∈ [1, t] and tp(d− 1) over all τ . By the pigeonhole principle, there must thus
exist an o ∈ [0, tp(d − 1)] such that no such shift happens among the gadgets
Ĝmo+πτ , for all τ ∈ [1, t] and π ∈ [1,m].

Our assignment for φ is then given by the selections for K in each gadget
Ĝmo+1
τ for this o: for every group Fτ we consider the selection of vertices from
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P lτ for l ∈ [1, p], forming subset Sτ and its associated partial assignment to the
variables of Fτ . In this way we get an assignment to all the variables of φ. To
see why this also satisfies every clause Cπ with π ∈ [1,m], consider clause gadget
Ĉmo+π: there must be an input vertex v selected from this gadget, corresponding
to a satisfying partial assignment for some literal of Cπ, that must be at distance
exactly d from each path selection that together give subset Sτ , the subset
associated with this satisfying partial assignment. ut

Lemma 8. Graph G has treewidth tw(G) ≤ tp+ qdp/2 + d.

Proof. We will in fact show a pathwidth bound of pw(G) ≤ tp + qdp/2 + d by
providing a mixed strategy to clean G using tp+qdp/2+d searchers. The claimed
bound on the treewidth then follows from lemmas 4 and 5.

We initially place one searcher on every first vertex pl1 of every path P lτ in
each gadget Ĝ1

τ for all l ∈ [1, p] and τ ∈ [1, t]. We also place a searcher on vertex

b1 of clause gadget Ĉ1, also one on each of its qµd
p/2 vertices a

bd/2c−1
i (between

the inputs and b1) and finally one searcher on each of the d− 1 vertices yd/2−1
(or ybd/2c for odd d) that are connected through a w1, . . . , wd/2−1 path to each
input vertex (or w1, . . . , wbd/2c).

We then slide the searcher on b1 over the path b1, . . . , b
dd/2e until all the

path’s edges as well as the edges between bdd/2e and every a
bd/2c−1
i are cleaned

(the clique edges between the a
bd/2c−1
i for even d are also clean). We then slide

the searchers from the a
bd/2c−1
i along each path to each input vertex and from

there on along the paths w1, . . . , wd/2−1 (or wbd/2c for odd d). In this way all
these paths and the edges between the wd/2−1 and yd/2−1 (or wbd/2c and ybd/2c
for odd d) are cleaned and we can slide the searchers from each yd/2−1 down to
each y1 (being adjacent to one path vertex each). We then slide all tp searchers
from the first vertices pl1 along their paths P lτ for l ∈ [1, p] in each gadget Ĝ1

τ .
After all edges of the first column have been cleaned in this way, we slide the tp
searchers on the first vertices of each path of the following column, we remove
the searchers from the vertices of the clause gadget (and adjacent paths) and
place them on their corresponding starting positions on the following column.
We then repeat the above process until all columns have been cleaned. We thus
use at most tp+ qdp/2 + d searchers simultaneously, where qdp/2 + d = O(1). ut

Theorem 1. For any fixed d > 2, if d-Scattered Set can be solved in O∗((d−
ε)tw(G)) time for some ε > 0, then there exists some δ > 0, such that q-SAT can
be solved in O∗((2− δ)n) time, for any q ≥ 3.

Proof. Assuming the existence of some algorithm of running time O∗((d −
ε)tw(G)) = O∗(dλtw(G)) for d-Scattered Set, where λ = logd(d − ε), we con-
struct an instance of d-Scattered Set given a formula φ of q-SAT, using the
above construction and then solve the problem using the O∗((d− ε)tw(G))-time
algorithm. Correctness is given by Lemma 6 and Lemma 7, while Lemma 8 gives
the upper bound on the running time:
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O∗(dλtw(G)) ≤ O∗
(
dλ(tp+f(d,ε,q))

)
(1)

≤ O∗
dλp

⌈
n

blog2(d)pc
⌉ (2)

≤ O∗
dλp n

blog2(d)pc+λp
 (3)

≤ O∗
dλ np

bp log2(d)c
 (4)

≤ O∗
dδ′ n

log2(d)

 (5)

≤ O∗(2δ′′n) = O((2− δ)n) (6)

for some δ, δ′, δ′′ < 1. Observe that in line (2) the function f(d, ε, q) = qdp/2 + d
is considered constant, as is λp in line (4), while in line (5) we used the fact that

there always exists a δ′ < 1 such that λ
p

bp log2(d)c =
δ′

log2(d)
, as we have:

p log2(d)− 1 < bp log2(d)c

⇔ λp log2(d)

p log2(d)− 1
>

λp log2(d)

bp log2(d)c ,

from which, by substitution, we get
λp log2(d)

p log2(d)− 1
> δ′,

now requiring
λp log2(d)

p log2(d)− 1
≤ 1,

or p ≥ 1

(1− λ) log2(d)
,

that is precisely our definition of p. This concludes the proof. ut

From Section 4, Treewidth: Dynamic Programming Algorithm

Table description: There is a table Di associated with every node i ∈ I of the
tree decomposition with Xi = {v0, . . . , vt}, 0 ≤ t ≤ tw, while each table entry
Di[κ, s0, . . . , st] contains the number of (disjoint) d-scattered sets K ⊆ Vi of size
|K| = κ (its partial solution) and is indexed by a number κ ∈ [1, k] and a t+ 1-
sized tuple (s0, . . . , st) of state-configurations, assigning a state sj ∈ [0, d− 1] to
each vertex vj ,∀j ∈ [0, t]. There are d possible states for each vertex, designating
its distance to the closest selection at the “current” stage of the algorithm:
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– Zero state sj = 0 signifies vertex vj is considered for selection in the d-
scattered set and is at distance at least d from any other such selection:
∀u ∈ K : d(u, vj) ≥ d.

– Low states sj ∈ [1, bd/2c] signify vertex vj is at distance at least sj from
its closest selection and at least d − sj from the second closest: ∀u,w ∈
K|d(u, vj) ≤ d(w, vj) : d(u, vj) ≥ sj ∧ d(w, vj) ≥ d− sj .

– High states sj ∈ [bd/2c+ 1, d− 1] signify vertex vj is at distance at least sj
from its closest selection: ∀u ∈ K : d(u, vj) ≥ sj .

For a node i ∈ I, each table entry Di[κ, s0, . . . , st] contains the number of
d-scattered sets K ⊆ Vi of the terminal subgraph Gi, such that the situation of
each vertex in the corresponding bag is being described by the particular state
configuration (s0, . . . , st) indexing this entry. The computation of each entry is
based on the type of node the table is associated with (leaf, introduce, forget,
or join), previously computed entries of the table associated with the preceding
node(s) and the structure of the node’s terminal subgraph. In particular, we
have ∀i ∈ I,Di[κ, s0, . . . , st] : [1, k]× [0, d− 1]t+1 7→ N0, where 0 ≤ t ≤ tw. The
inductive computation of all table entries for each type of node follows.

Leaf node i with Xi = {v0}:

Di[κ, s0] :=


1 , if s0 = 0, κ = 1;

1 , if s0 > 0, κ = 0;

0 , otherwise.

Leaf nodes contain only one vertex and there is one d-scattered set that includes
this vertex for (s0 = 0, κ = 1) and one d-scattered set that does not (for s0 > 0,
κ = 0).

Introduce node i with Xi = Xi−1 ∪ {vt+1}:

Di[κ, s0, . . . , st, st+1] :=



Di−1[κ, s0, . . . , st], if st+1 ∈ [1, d− 1] and

st+1 ≤ minvj∈Xi−1
(d(vt+1, vj) + sj);

Di−1[κ′, s′0, . . . , s
′
t], if st+1 = 0, κ′ = κ− 1 and ∀vj ∈ Xi−1 with sj = 0,

it is d(vt+1, vj) ≥ d, and

∀vj ∈ Xi−1 with d(vt+1, vj) ≤ bd/2c,
it is sj ≤ d(vt+1, vj) and s′j = d− sj ,
with s′j = sj , if d(vt+1, vj) > bd/2c;

0, otherwise.

When a vertex is introduced, for previously computed partial solutions to be
correctly extended, we require that its given state matches the distance/state
conditions of the other vertices in the bag, while if the introduced vertex is
considered for selection, then the previous entries we examine must ensure this
selection is possible.
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Forget node i with Xi = Xi−1 \ {vt+1}:

Di[κ, s0, . . . , st] :=
∑

st+1∈[0,d−1]
{Di−1[κ, s0, . . . , st, st+1]}.

The correct value for each entry is the sum over all states of the forgotten vertex
vj , where the size of the d-scattered sets is κ.

Join node i with Xi = Xi−1 = Xi−2: Given state-tuple (s0, . . . , st), we assume
(without loss of generality) that for some t′ ∈ [0, t] (if any) it is sj ∈ [1, bd/2c],∀j ∈
[0, t′] and also min∀vl∈Xi|sl=0 d(vj , vl) > bd/2c, while all other vertices are

vt′+1, . . . , vt. Now, let S≤t′ denote the set of all possible tuples S = (s≤0 , . . . , s
≤
t′ ),

where each state s≤j is either the same state sj , or its symmetrical (around d/2):

S≤t′ := {(s≤0 , . . . , s≤t′ )|∀j ∈ [0, t′] : {(s≤j = sj) ∨ (s≤j = d− sj)}},

while for some tuple S ∈ S≤t′ , let S̄ denote the complementary tuple (where the
state of each vertex is likewise reversed) and also let κ′′ denote the number of
zero states in (st′+1, . . . , st). Then we have:

Di[κ, s0, . . . , st] :=
∑
S∈S≤

t′

{Di−1[κ′, S, st′+1, . . . , st]·Di−2[κ−κ′+κ′′, S̄, st′+1, . . . , st]}.

For join nodes, the bags of both children contain the same set of vertices, yet
the partial solutions characterized by the entries of each table concern distinct
terminal subgraphs Gi−1 and Gi−2. For state-configurations where some vertices
are of low state (that is not justified by the presence of some vertex of zero state
within the bag), the closest selection to these vertices (that gives the state) might
be in any of the two terminal subgraphs, but not both: if the “target” state is
sj ∈ [1, bd/2c], then there might be a selection in Gi−1 at distance sj but there
must not be another selection in Gi−2 at distance ≤ d− sj (and vice-versa).

State changes: The computations at a join node as described above would add
an additional factor in the complexity of our algorithm if implemented directly,
yet this can be avoided by an application of the state changing technique (or
fast subset convolution, see [2,7,31] and Chapter 11 from [10]): since the number

of entries involved can be exponential in tw (due to the size of S≤t′ ), in order to
efficiently compute the table for a join node i, we will first transform the tables
Di−1, Di−2 of its children into tables D∗i−1, D

∗
i−2 of a new type that employs

a different state representation, for which the join operation can be efficiently
performed to produce table D∗i , that we will finally transform back to table Di,
thus progressing with our dynamic programming algorithm.

In particular, each entry D∗i [κ, s1, . . . , st] of the new table will be an aggregate
of entries Di[κ, s0, . . . , st] of the original table, with its value equal to the sum of
the appropriate values of the corresponding entries. For vertex vj , each low state
sj ∈ [1, bd/2c] in the new state signification for table D∗i that is not justified by
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the presence of an appropriate selection within the bag (i.e. its minimum distance
to any zero-state vertex is at least bd/2c+ 1) will correspond to both the same
low state sj and its symmetrical high state d− sj from the original signification.

Observe that these correspondences exactly parallel the definition of set S≤t′ used
in the original computations.

First, let D∗i be a copy of table Di. The transformation then works in t
steps, vertex-wise: we require that all entries D∗i [κ, s∗0, . . . , s

∗
t ] contain the sum

of all entries of Di where for low states s∗j (that are also not justified by some
present selection), it is s∗j = sj or s∗j = d − sj , and all other vertex-states and
κ are fixed: at step j, we add D∗i [κ, s0, . . . , sj , . . . , st] = Di[κ, s0, . . . , sj , . . . , st] +
Di[κ, s0, . . . , d− sj , . . . , st] if sj ∈ [1, bd/2c] and min∀vl∈Xi|si=0 d(vj , vl) > bd/2c.
We then proceed to the next step for vj+1 until table D∗i is computed. Ob-
serve that the above procedure is fully reversible:1 to invert table D∗i back
to table Di, we again work in t steps, vertex-wise: we first let Di be a copy
of D∗i and then at step j for all other vertex-states and κ fixed, we subtract
Di[κ, s0, . . . , sj , . . . , st] = D∗i [κ, s0, . . . , sj , . . . , st]−D∗i [κ, s0, . . . , d− sj , . . . , st] if
sj ∈ [1, bd/2c] and min∀vl∈Xi|si=0 d(vj , vl) > bd/2c. For both transformations,
we perform at most one addition per k · dt+1/2 entries for each step j ∈ [0, t].

Thus we can compute table D∗i by simply multiplying the values of the
two corresponding entries from D∗i−1, D

∗
i−2, as they now contain all required

information for this state representation, with the inverse transformation of the
result giving table Di:

D∗i [κ, s0, . . . , st] :=

κ′=κ∑
κ′=0

D∗i−1[κ′, s0, . . . , st] ·D∗i−2[κ− κ′ + κ′′, s0, . . . , st].

Theorem 2. Given graph G, along with d ∈ N+ and nice tree decomposition
(X , T ) of width tw for G, there exists an algorithm to solve the counting version
of the d-Scattered Set problem in O∗(dtw) time.

Proof. Let Ui(κ, s0, . . . , st) = {K ⊆ Vi|K ∩ Xi = {vj ∈ Xi|sj = 0}, |K| =
κ,∀u, v ∈ K : d(u, v) ≥ d} be the set of all d-scattered sets in Gi of size κ. To
show correctness of our algorithm we need to establish that for every node i ∈ I,
each table entry Di[κ, s0, . . . , st] contains the size of a partial solution to the
problem as restricted to Gi, i.e. the size of this set |Ui(κ, s0, . . . , st)|, such that
the distance between every pair of vertices in K is at least d, while for every
vertex vj ∈ Xi, its state for this entry describes its situation within this partial
solution. In particular, we need to show the following:

1 This is the reason for counting the number of solutions for each κ: there is no additive
inverse operation for the max-sum semiring, yet the sum-product ring is indeed
equipped with subtraction.
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∀i ∈ I, ∀κ ∈ [1, k],∀(s0, . . . , st) ∈ [0, d− 1]t+1, 0 ≤ t < tw : (7)

Di[κ, s0, . . . , st] = |Ui(κ, s0, . . . , st)| : (8)

{∀u,w ∈ K : d(u,w) ≥ d}∧ (9)

∧{∀vj ∈ Xi|sj ∈ [1, bd/2c],∀u,w ∈ K|d(u, vj) ≤ d(w, vj) : (10)

d(u, vj) ≥ sj ∧ d(w, vj) ≥ d− sj}∧ (11)

∧{∀vj ∈ Xi|sj ∈ [bd/2c+ 1, d− 1],∀u ∈ K : d(u, vj) ≥ sj}. (12)

In words, the above states that for every node i, κ ∈ [1, k] and all possible
state-configurations (s0, . . . , st) (7), table entry Di[κ, s0, . . . , st] contains the size
of set Ui(κ, s0, . . . , st) containing all subsets K of Vi (that include all vertices
vj ∈ Xi of state sj = 0) of size |K| = κ (8), such that the distance between every
pair of vertices u,w ∈ K is at least d (9), for every vertex vj ∈ Xi with low state
sj ∈ [1, bd/2c] and a pair of vertices u,w from K with u closer to vj than w (10),
its distance to u is at least equal to its state sj , while its distance to w is at least
d− sj (11), while for every vertex vj ∈ Xi with high state sj ∈ [bd/2c+ 1, d− 1]
and a vertex u from K, its state sj is at most its distance to u (12). This is
shown by induction on the nodes i ∈ I:

– Leaf node i with Xi = {v0}: This is the base case of our induction. There is
only one d-scattered set K in Vi of size κ = 1, for which (9-12) is true, that
includes v0 and only one for κ = 0 that does not. In the following cases, we
assume (our inductive hypothesis) that all entries of Di−1 (and Di−2 for join
nodes) contain the correct number of sets K.

– Introduce node i with Xi = Xi−1 ∪ {vt+1}: For entries with sj ∈ [1, bd/2c],
validity of (9,12) is not affected, while for (10-11): it is st+1 ≤ d(vt+1, vj) + sj
for some vertex vj ∈ Xi−1, for which, by the induction hypothesis we have
that sj ≤ d(u, vj) and d− sj ≤ d(w, vj), where u is the closest selection to
vj and w the second closest. To see the same holds for vt+1, observe that
st+1 ≤ d(vt+1, vj) + d(u, vj) ≤ d(vt+1, u) (by substitution) and d − sj ≤
d(w, vj)⇒ d−d(w, vj) ≤ sj ⇒ d−d(w, vj)+d(vj , vt+1) ≤ d(vt+1, vj)+sj ⇒
d− d(w, vt+1) ≤ st+1 ⇒ d− st+1 ≤ d(w, vt+1).
For entries with st+1 ∈ [bd/2c+ 1, d − 1], validity of (9-11) is not affected,
while for (12): it is st+1 ≤ d(vt+1, vj) + sj for some vertex vj ∈ Xi−1, for
which, by the induction hypothesis we have that sj ≤ d(u, vj) and thus
st+1 ≤ d(vt+1, vj) + d(u, vj) ≤ d(vt+1, u).
For entries with st+1 = 0, observe that the low states sj of vertices vj ∈ Xi−1
in the new entry with d(vt+1, vj) ≤ bd/2c (for otherwise their situation has
not changed by addition of vt+1 with st+1 = 0) would correspond to a high
original state s′j = d− sj in the previously computed entry, for which partial
solution we know that d(vj , u) ≥ s′j ,∀u ∈ K, or that the previously closest
selection was at distance at least s′j (10-11). For high states sj of vertices
vj ∈ Xi−1, the requirement is exactly d(vt+1, vj) ≥ sj (12) and finally, for
(9), if there was some u ∈ K such that u /∈ Xi−1 and d(u, vt+1) < d, then
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there must be some vj ∈ Xi−1 (on the path between u and vt+1), for which
if d(vt+1, vj) ≤ bd/2c and sj is low then (12) was false (as s′j must have been
high and matching d(u, vj)), while if d(vt+1, vj) > bd/2c and sj is high, then
(10-11) was false (in all other cases it would not be d(u, vt+1) < d).

– Forget node i with Xi = Xi−1 \ {vt+1}: In a forget node, the only difference
for the partial solutions in which the forgotten vertex was of state st+1 = 0
is that now vertex vt+1 is included in set K only and not Xi. Thus, due to
(9), the correct number is indeed the sum over all states for vt+1.

– Join node i with Xi = Xi−1 = Xi−2: Observe that for (9), if there was a pair
u,w ∈ K ∩Xi or u ∈ K ∩Xi, w ∈ K \Xi at d(u,w) < d, then (9) was not
true for either i−1 or i−2, while if there was a pair u ∈ K∩Vi−1 \Xi−1, w ∈
K ∩ Vi−2 \Xi−2 with d(u,w) < d, then there must be some vertex vj ∈ Xi

(on the path between the two) for which (11) was not true. For (10-12),
observe that for vertices vj of low state sj , (10-11) must have been true for
either i− 1 or i− 2 and (12) for the other, while for vertices vj of high state
sj it suffices that (12) must have been true for both.

For the algorithm’s complexity, there are k · dtw entries for each table Di of
any node i ∈ I, with |I| = O(tw · |V |) for nice tree decomposition (X , T = (I, F )),
while any entry can be computed in time O(1) for leaf and introduce nodes, O(d)
for forget nodes, while the state changes can be computed in O(k · tw · dtw) time,
with each entry of the transformed table D∗i computed in O(k) time. ut

From Section 5, Vertex Cover, Feedback Vertex Set: W[1]-Hardness

Construction: First, for every set Vi ⊆ V we create a set Pi ⊆ V ′ of n vertices
pil,∀l ∈ [1, n],∀i ∈ [1, k] (that directly correspond to the vertices of Vi). Next, for
each i ∈ [1, k] we make a pair of vertices ai, bi, connecting ai to each vertex pil
by an edge of weight n + l, while bi is connected to each vertex pil by an edge
of weight 2n − l. Next, for every non-edge e ∈ Ē (i.e. Ē contains all pairs of
vertices from V that are not connected by an edge from E) between two vertices
from different Vi1 , Vi2 (with i1 6= i2), we make a vertex ue that we connect to
vertices ai1 , bi1 and ai2 , bi2 . We set the weights of these edges as follows: suppose
that e is a non-edge between the j1-th vertex of Vi1 and the j2-th vertex of Vi2 .
We then set w(ue, ai1) = 5n− j1, w(ue, bi1) = 4n+ j1 and w(ue, ai2) = 5n− j2,
w(ue, bi2) = 4n + j2. Next, for every pair of i1, i2 we make two vertices gi1,i2 ,
g′i1,i2 . We connect gi1,i2 to all vertices ue that correspond to non-edges e between
vertices of the same pair Vi1 , Vi2 by edges of weight (6n − 1)/2 and also gi1,i2
to g′i1,i2 by an edge of weight (6n+ 1)/2. This concludes the construction of G′,
with Figure 7 providing an illustration.

Lemma 9. If G has a k-multicolored independent set, then G′ has a 6n-scattered
set of size k + 2

(
k
2

)
= k + k(k − 1) = k2.

Proof. Let I ⊆ V be a multicolored independent set in G of size k and vili denote

the vertex selected from each Vi, or I := {v1l1 , . . . , vklk}. Let S ⊆ V ′ include the set

of vertices pili in G′ that correspond to each vili . For any pair i, j ∈ [1, k] of indices
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P1 Pi Pk

ai bi

pin

pi1
n+ 1

2n

n+ l

n

2n− 1
2n− l

4n+ l5n− l
6n−1

2
g1,i

g′1,i

ue

6n+1
2

Fig. 7: A general picture of graph G′, where the circled vertex is pil and dotted
lines match weights to edges.

with i 6= j, let ue be the vertex corresponding to the non-edge between vertices
vili , v

j
lj
∈ I. All these ue vertices exist, as I is a k-multicolored independent set.

We include all these ue vertices in S and also every g′i,j that is connected to gi,j

that each such ue is connected to. Now S is of size k + 2
(
k
2

)
and we claim it is

a 6n-scattered set: all selected vertices pili are at distance n+ li + 5n− li = 6n
via ai and distance 2n − li + 4n + li = 6n via bi from any selected vertex ue
that corresponds to a non-edge “adjacent” to their corresponding vili , while every
selected vertex ue corresponding to a non-edge between two vertices of groups
Vi1 , Vi2 is at distance (6n− 1)/2 + (6n+ 1)/2 = 6n from every selected vertex
g′i1,i2 that is connected to gi1,i2 that connects all such ue vertices between these
groups. ut

Lemma 10. If G′ has a 6n-scattered set of size k + 2
(
k
2

)
= k + k(k − 1) = k2,

then G has a k-multicolored independent set.

Proof. Let S ⊆ V ′ be the 6n-scattered set, with |S| = k+2
(
k
2

)
. As the distance via

gi,j between any two vertices ue, uh corresponding to non-edges between vertices
of the same groups Vi, Vj is 6n− 1, set S can contain at most one such vertex for

every such pair of groups, their number being
(
k
2

)
. Since the size of S is k + 2

(
k
2

)
,

the set must also contain one other vertex per group, the only choices available
being vertices g′i,j at distance (6n− 1)/2 + (6n+ 1)/2 = 6n from any such ue,
leaving the k choices for at most one vertex from each Pi, as the distance between
any pair pil1 , p

i
l2

is 2n+ l1 + l2 < 6n via ai and 4n− l1 − l2 < 6n via bi. Now, let

ue ∈ S be a selected vertex corresponding to a non-edge between vertices vili , v
j
lj

from groups Vi, Vj and pioi , p
j
oj ∈ S be the vertices selected from Pi, Pj . Vertex ue
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is at distance 5n− li+n+oi = 6n+oi− li via ai and 4n+ li+2n−oi = 6n+ li−oi
via bi from pioi ∈ Pi, while at distance 5n− lj + n+ oj = 6n+ oj − lj via aj and
4n+ lj + 2n− oj = 6n+ lj − oj via bj from pjoj ∈ Pj . It is not hard to see that if

oi 6= li then ue and pili cannot be together in S, while also if oj 6= lj then ue and

pjlj cannot be together in S. Thus, there must be no edge between every pair of

vertices vili , v
j
lj

that correspond to pili , p
j
lj
∈ S, meaning the set I that includes

all such vili is a k-multicolored independent set. ut

Theorem 3. The edge-weighted d-Scattered Set problem is W[1]-hard pa-
rameterized by vc + k. Furthermore, if there is an algorithm for edge-weighted

d-Scattered Set running in time no(
√
vc+
√
k) then the ETH is false.

Proof. Observe that the set Q ⊂ V ′ that includes all vertices ai, bi,∀i ∈ [1, k]
and all vertices gi,j ,∀i 6= j ∈ [1, k] is a vertex cover of G′, as all edges have

exactly one endpoint in Q. This means vc(G′) ≤ 2k +
(
k
2

)
= O(k2). In addition,

the relationship between the sizes of the solutions of d-Scattered Set and
k-Multicolored Independent Set is k′ = |S| = k + 2

(
k
2

)
= O(k2). Thus, the

construction along with lemmas 9 and 10, indeed imply the statement. ut

Corollary 1. The unweighted d-Scattered Set problem is W[1]-hard parameter-
ized by fvs+k. Furthermore, if there is an algorithm for unweighted d-Scattered

Set running in time no(fvs+
√
k) then the ETH is false.

Proof. The modifications to the above construction that we require are the
following: each edge e of weight w(e) is substituted by a path of length w(e),
apart from the edge between every gi1,i2 to every g′i1,i2 that is now a path of
length d− 1 = 6n− 1 and all edges between every gi1,i2 to all adjacent ue that
correspond to non-edges between vertices of pair Vi1 , Vi2 that are now only a
single edge. In this way, Lemma 9 goes through unchanged, while for Lemma 10,
it suffices to observe that no two vertices anywhere on the paths between some
gi1,i2 and some ai, bi could be selected instead of the intended selection of g′i1,i2
and some ue that matches the selections from Vi1 , Vi2 , as the distance between
any two vertices between gi1,i2 and some ai, bi is always < 2d = 12n, while if
the selected vertices are not exactly some g′i1,i2 and (the correct) ue, then the
minimum distance between these selections and the closest selection from Vi1 , Vi2
will be less than d.

It is not hard to see that the set Q containing all ai, bi, ∀i ∈ [1, k] is a feedback
vertex set of G′, as removal of all these vertices results in an acyclic graph, hence
fvs(G′) ≤ O(k). ut

From Section 6, Vertex Cover: FPT Algorithm

Theorem 4. Given graph G, along with d > 2 and a vertex cover of size vc of G,
there exists an algorithm solving the unweighted d-Scattered Set problem in
O∗(3vc) time for even d and O∗(4vc) time for odd d.
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Proof. Let C be the given vertex cover of G and I = V \ C be the remaining
independent set. Let also Y ⊆ I be the subset of vertices from I with a unique
neighborhood in C, i.e. for two vertices u, v ∈ I with N(u) = N(v), set Y only
contains one of them. Observe that the size of Y is thus exponentially bounded
by the size of C: |Y | ≤ 2|C|.

For an instance of our Partial Set Packing variant, let U = {u1, . . . , un}
be the universe of elements and S = {S1, . . . , Sm} be the set family. Further, for
even d, we introduce a weight function w(ui, Sj) : U × S 7→ {0, 1/2, 1}, giving
the coefficient of element ui for inclusion in set Sj , where 0 implies the element
is not included in the set, 1/2 implies partial and 1 complete inclusion. For odd
d, the weight function w(ui, Sj) : U × S 7→ {0, 1/3, 2/3, 1} allows more values for
partial inclusion. In our solutions to this variant we will allow any number of
sets to partially include any element, yet if any set in the solution completely
includes some element, then no other set that includes the same element either
partially, or completely, can also be part of the same solution, i.e. a collection of
subsets S ⊆ S will be a solution, if for every element ui ∈ U , the sum for any
two pairs is at most 1: maxSa,Sb∈S{w(ui, Sa) + w(ui, Sb)} ≤ 1.

We then define our Partial Set Packing instance as follows: we make an
element ui ∈ U for every vertex of C and a set Sj ∈ S for every vertex of C ∪ Y .
We thus have |C| elements and |C|+ |Y | ≤ |C|+ 2|C| sets. For even d, an element
ui with corresponding vertex v ∈ C is included in some set Sj with corresponding
vertex z completely (or w(ui, Sj) = 1) if d(v, z) < d/2, while an element ui with
corresponding vertex v ∈ C is included in some set Sj with corresponding vertex
z partially (or w(ui, Sj) = 1/2), if d(v, z) = d/2. For odd d, an element ui with
corresponding vertex v ∈ C is included in some set Sj with corresponding vertex
z completely (or w(ui, Sj) = 1) if d(v, z) < bd/2c, 2/3-partially (w(ui, Sj) = 2/3)
if d(v, z) = bd/2c and 1/3-partially (w(ui, Sj) = 1/3) if d(v, z) = dd/2e.

In the classic dynamic programming procedure for Set Packing we store a
table OPT [U, j] that contains, for every subset of elements U ⊆ U and j ∈ [1,m]
the maximum number of subsets that can be selected from {S1, . . . , Sj}, such that
no element of U is included in any of them. The dynamic programming procedure
then first computes for j = 1: OPT [U, 1] := 1, if U∩Sj = ∅ and 0 otherwise, while
for j = 2, . . . ,m it is: OPT [U, j + 1] := max{OPT [U, j], OPT [U ∪ Sj+1, j] + 1}
if Sj+1 ∩ U = ∅ and only OPT [U, j + 1] := OPT [U, j] otherwise.

We will create a similar table OPT [U, j] for every j ∈ [1,m] and every U =
{(ui ∈ U , w(ui, U))} (of the possible 3|U| or 4|U|), storing the maximum number
of sets that can be selected from {S1, . . . , Sj} to form a partial solution S′ ⊆
{S1, . . . , Sj}, so that for any element ui it is maxSl∈S′{w(ui, Sl) +w(ui, U)} ≤ 1.
Letting the union operator A ∪ B transfer maximum inclusion, i.e. w(ui, A ∪
B) = max{w(ui, A), w(ui, B)}, and substituting the check for U ∩ Sj = ∅ by
∀ui ∈ U ∪ Sj : w(ui, U) +w(ui, Sj) ≤ 1 in the above procedure, we can solve the
Partial Set Packing instance in O(mn4n) time (and only O(mn3n) for even
d).

Given a solution S ⊆ S to our Partial Set Packing instance, we will
show that it corresponds to a solution for the original instance of d-Scattered
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Set. First observe that on any shortest path v0, . . . , vd between vertices v0, vd,
we know that any vertex vi will either be included in C, or both its neighbors
vi−1, vi+1 on the path will be included instead, as otherwise both edges adjacent
to vi are not covered by C.

Consider first the case where d is even. On the shortest path between two
vertices v0, vd that are at distance d from each other there will be one (middle)
vertex vd/2 at distance d/2 from both and if vd/2 ∈ C then the corresponding
element will be partially included in both sets corresponding to v0, vd, while if
vd/2 /∈ C, each of the elements corresponding to its neighbors vd/2−1, vd/2+1 on
the path will be completely included in one set each and thus both sets can be
used in solution S. For two vertices v0, vd−1 at distance d− 1 from each other,
there will be one vertex vd/2 at distance d/2 from v0 and d/2 − 1 from vd−1
and also one vertex vd/2−1 at distance d/2 − 1 from v0 and d/2 from vd−1. If
vd/2 ∈ C, then its corresponding element is included partially by 1/2 in the
set corresponding to vertex v0 and completely by 1 in the set corresponding to
vertex vd−1. Otherwise, if vd/2−1 ∈ C, then its corresponding element is included
completely by 1 in the set corresponding to vertex v0 and partially by 1/2 in the
set corresponding to vertex vd−1. Thus in both cases these two sets cannot be
included together in S. The argument also holds if the distance between the two
vertices is smaller than d− 1.

Next, if d is odd, on the shortest path between two vertices v0, vd that are
at distance d from each other there will be two middle vertices vbd/2c, vdd/2e
at distances bd/2c and dd/2e from each. Now, vertex vbd/2c will be at distance
bd/2c from v0 and distance dd/2e from vd and if vbd/2c ∈ C its element will be
included by 2/3 in the set corresponding to v0 and by 1/3 in the set corresponding
to vd. Similarly, if vdd/2e ∈ C, its element will be included by 1/3 in the set
corresponding to v0 and by 2/3 in the set corresponding to vd. Thus in both cases
the two sets can be included together in S. For two vertices v0, vd−1 at distance
d − 1 from each other, if vertex vbd/2c ∈ C, then its element will be included
by 2/3 in both sets corresponding to v0, vd−1, while if vbd/2c /∈ C, then we have
that both its neighbors vbd/2c−1, vbd/2c+1 ∈ C. Now, the element corresponding
to vbd/2c−1 will be completely included by 1 in the set corresponding to v0 and
partially by 1/3 in the set corresponding to vd−1, while the element corresponding
to vbd/2c+1 will likewise be included partially by 1/3 in the set corresponding
to v0 and completely by 1 in the set corresponding to vd−1. Thus in both cases,
these two sets cannot be included together in S, while the argument also holds if
the distance between the vertices is smaller than d− 1.

As the number of sets in our Partial Set Packing instance is m =
|C|+ |Y | ≤ |V | and the number of elements is n = |C| = vc, the total running
time of our algorithm is bounded by O∗(4vc) for odd d and O∗(3vc) for even
d. ut

From Section 7, Tree-depth: Tight ETH Lower Bound

Lemma 1. For any graph G = (V,E) we have D(G) ≤ 2td+1 − 2, where D(G)
denotes the graph’s diameter.
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Proof. We use the following equivalent inductive definition of tree-depth: td(K1) =
0 while for any other graph G = (V,E) we set td(G) = 1 + minu∈V td(G \ u)
if G is connected, and td(G) = maxC td(G[C]) if G is disconnected, where the
maximum ranges over all connected components of G.

We prove the claim by induction. The inequality is true for K1, whose diameter
is 0. For the inductive step, the interesting case is when G = (V,E) is connected,
since otherwise we can assume that the claim has been shown for each connected
component and we are done. Let u ∈ V be such that td(G) = 1 + td(G \ u).
Consider two vertices v1, v2 ∈ V \ {u} which are at maximum distance in G. If
v1, v2 are in the same connected component of G′ := G \ u, then dG(v1, v2) ≤
dG′(v1, v2) ≤ D(G′) ≤ 2td(G′)+1 − 2 ≤ 2td(G)+1 − 2, where we have used the
inductive hypothesis on G′. So, suppose that v1, v2 are in different connected
components of G′. It must be the case that u has a neighbor in the component
of v1 (call it v′1) and in the component of v2 (call it v′2), because G is connected.
We have dG(v1, v2) ≤ dG(v1, v

′
1) + 2 + dG(v2, v

′
2) ≤ dG′(v1, v′1) + 2 + dG′(v2, v

′
2) ≤

2D(G′) + 2 ≤ 2 · 2td(G′)+1 − 2 = 2td(G)+1 − 2. ut

Theorem 5. Unweighted d-Scattered Set can be solved in time O∗(2O(td2)).

Proof. The main observation is that we can assume that d ≤ D(G), because
otherwise the problem is trivial. Hence, by Lemma 1 we have d ≤ 2td+1. We can
now rely on Lemma 4 to get tw ≤ td, and the algorithm of Theorem 2 which
runs in time O∗(dtw) gives the desired running time. ut

Construction: Given an instance φ of 3-SAT on n variables and m clauses, where
we can assume that m = O(n) (by the Sparsification Lemma, see [20]), we will
create an instance [G = (V,E)] of the unweighted d-Scattered Set problem
where d = 6 · c

√
n for an appropriate constant c (to simplify notation, we assume

without loss of generality that
√
n is an integer). We first group the clauses of

φ into
√
n equal-sized groups F1, . . . , F√n and as a result, each group involves

O(
√
n) variables, with 2O(

√
n) possible assignments to the variables of each group.

We select c appropriately so that each group Fi has at most c
√
n possible partial

assignments φij for the variables of clauses in Fi.

We then create for each i ∈ {1, . . . ,√n}, a set Pi of at most c
√
n vertices

pi1, . . . , pc
√
n , such that each vertex of Pi represents a partial assignment to

the variables of Fi that satisfies all clauses of Fi. We then create for each
i ∈ {1, . . . ,√n} a pair of vertices ai, bi and we connect ai to each vertex pil by a

path of length c
√
n + l, while bi is connected to each vertex pil by a path of length

2 · c
√
n − l. Now each Pi contains all ai, bi and pil, i ∈ {1, . . . , c

√
n}.

Finally, for every two non-conflicting partial assignments φil, φ
j
o, with l, o ∈

[1, c
√
n] and i, j ∈ [1,

√
n], i.e. two partial assignments that do not assign conflict-

ing values to any variable, we create a vertex ui,jl,o that we connect to vertices

ai, bi and aj , bj : if pil ∈ Pi is the vertex corresponding to φil and pjo ∈ Pj is the

vertex corresponding to φjo, then vertex ui,jl,o is connected to ai by a path of length

5 · c
√
n − l and to bi by a path of length 4 · c

√
n + l, as well as to aj by a path of
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length 5 · c
√
n − o and to bj by a path of length 4 · c

√
n + o. Next, for every pair

i, j we make two vertices gi,j , g
′
i,j . We connect gi,j to all vertices ui,jl,o (for any

l, o) by a single edge and also gi,j to g′i,j by a path of length 6 · c
√
n − 1. This

concludes our construction and Figure 8 provides an illustration.

P1 Pi Pk

ai bi

pi
c
√

n

pi1

u1,i
o,l

c
√
n + 1

2 · c
√
n

c
√
n + l

c
√
n

2 · c
√
n − 1

2 · c
√
n − l

4 · c
√
n + l5 · c

√
n − l

6 · c
√
n − 1

g1,i

g′1,i

Fig. 8: A general picture of graph G, where straight lines imply paths of length
equal to the number indicated by dotted lines, while the circled vertex is pil.

Lemma 11. If φ has a satisfying assignment, then there exists a 6 ·c
√
n-scattered

set in G of size
√
n+ 2

(√
n
2

)
= n.

Proof. Consider the satisfying assignment for φ and let φili , with li ∈ [1, c
√
n] and

i ∈ [1,
√
n], be the restriction of that assignment for all variables appearing in

clauses of group Fi. We claim the set K, consisting of all vertices pili corresponding

to φili , all vertices g′i,j and all ui,jl,o vertices for which we have selected pil and

pjo (all these vertices exist, as the corresponding partial assignments are non-

conflicting), is a d-scattered set for G of size |K| = √n+ 2
(√

n
2

)
= n: all selected

vertices pili are at distance c
√
n + li + 5 · c

√
n − li = 6 · c

√
n via ai and distance

2 · c
√
n − li + 4 · c

√
n + li = 6 · c

√
n via bi from any selected vertex ui,jli,lj , while

every selected ui,jli,lj is at distance 6 · c
√
n − 1 + 1 = 6 · c

√
n from every selected

g′i,j . ut

Lemma 12. If there exists a 6 · c
√
n-scattered set in G of size

√
n+ 2

(√
n
2

)
= n,

then φ has a satisfying assignment.
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Proof. Let S ⊆ V be the 6 · c
√
n-scattered set in G, with |S| = n. For every

pair i, j ∈ [1,
√
n], set S cannot contain more than one vertex from the paths

between gi,j and ai, bi, aj , bj , as the distance between any pair of such vertices is

always < 2 · 6 · c
√
n (due to the single edges between gi,j and any ui,jli,lj ). Likewise,

set S cannot contain more than two vertices from the paths between g′i,j and
ai, bi, aj , bj , as the maximum sum of distances between any three such vertices is

< 3 · 6 · c
√
n. Since |S| = √n+ 2

(√
n
2

)
, set S must also contain

√
n other vertices

and due to the distance between any pair of vertices pil, p
i
o from the same group

Pi being < 4 · √n, there must be one selection from each group Pi. Furthermore,
for two such selections pili , p

j
lj

, the only option for the other two selections (for

this pair of groups i, j) is to select vertices g′i,j and ui,jli,lj , since the distances

from pili , p
j
lj

to ui,jli,lj (through ai, bi, aj , bj) will only be equal to 6 · c
√
n if these

selections (and indices) match, with the only remaining option at distance 6 · c
√
n

(for any choice of ui,jli,lj ) being vertex g′i,j . ut

Lemma 13. The tree-depth of G is 2
√
n+ dlog(6 · c

√
n)e+ 1 = O(

√
n).

Proof. We again employ the alternative definition of tree-depth used in Lemma 1.
Consider graph G after removal of all vertices ai, bi,∀i ∈ [1,

√
n]. The graph now

consists of
√
n · c

√
n paths of length < 3 · c

√
n through each vertex in Pi and

(√
n
2

)
trees, considered rooted at each vertex gi,j . The maximum distance in each such

tree between a leaf and its root is 6 · c
√
n − 1 (for vertex g′i,j) and the claim then

follows, as paths of length n have tree-depth exactly dlog(n+ 1)e (this can be
shown by repeatedly removing the middle vertex of each path). By the definition
of tree-depth, after removal of 2

√
n vertices from G, the maximum tree-depth of

each resulting disconnected component is dlog(6 · c
√
n)e = d√n · log(c) + log(6)e.

ut

Theorem 6. If unweighted d-Scattered Set can be solved in 2o(td
2) ·nO(1) time,

then 3-SAT can be solved in 2o(n) time.

Proof. Suppose there is an algorithm for d-Scattered Set with running time
2o(td

2). Given an instance φ of 3-SAT, we use the above construction to create an
instance [G = (V,E)] of d-Scattered Setwith d = 6 · c

√
n, in time O(

√
n · c

√
n +

c2
√
n). As, by Lemma 13, we have td(G) ≤ O(

√
n), using the supposed algorithm

for d-Scattered Set we can decide whether φ has a satisfying assignment in
time 2o(td

2) · nO(1) = 2o(n). ut

From Section 8, Treewidth revisited: FPT-AS

Modifications: Our approximation algorithm will be a modification of the ex-
act dynamic programming for d-Scattered Set, given in Section 4. For the
approximation algorithm, we will make use of an adaptation of this algorithm
of Theorem 2, that works for the maximization version of the problem instead
of the counting version (albeit not optimally). We first describe the necessary
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modifications to the counting version and then the subsequent changes for use of
our rounded values.

The algorithm for the maximization version needs the following changes: for
a leaf node i we set Di[s0] := 1, if s0 = 0, and 0 otherwise. For an introduce node
i, we also add a +1 to the values of previously computed entries if st+1 = 0 and
the same conditions hold as in the counting version, while a value of 0 for invalid
state-representations is substituted by an arbitrarily large negative value −∞.
For forget nodes i we now compare all previous partial solutions to retain the
maximum over all states of the forgotten vertex, instead of computing their sum,
while for join nodes, we also substitute taking the sum by taking the maximum,
with multiplication also substituted by addition of entries from the previous
tables (i.e. we move our computations from the sum-product ring to the max-sum
semiring), as well as subtracting from each such computation the number of
vertices of zero state for the given entry (that would be counted twice).

We next explain the necessary modifications to the exact algorithm for use
of the rounded states σ ∈ Σd

δ . Consider a node i introducing vertex vt+1: for a
new entry to describe a proper extension to some previously computed partial
solution, if the new vertex is of state st+1 ∈ [1, d − 1] in the new entry, then
there must be some vertex vj ∈ Xi, such that st+1 ≤ d(vt+1, vj) + sj (the one for
which this sum is minimized), i.e. we require that the new state of the introduced
vertex matches its distance to some other vertex in the bag plus the state of that
vertex (being the one responsible for connecting vt+1 to the partial solution).
The rounded state σt+1 for vt+1 must then satisfy: σt+1 ≤ d(vt+1, vj)⊕ σj .

Further, states are now considered low if 0 < σ ≤ bd/2c(1+ε) , while, from a set of

already computed states σ′, the symmetrical (around d/2) state σ̄ for a given low
state σ is defined as the minimum state σ′ for which σ + σ′ ≥ d

(1+ε) . Thus, for a

node introducing vertex vt+1 with state σt+1 = 0, we require that ∀vj ∈ Xi−1
with σj = 0, it is d(vt+1, vj) ≥ d

(1+ε) , and ∀vj ∈ Xi−1 with d(vt+1, vj) ≤ bd/2c(1+ε) ,

it is σj ≤ d(vt+1, vj) and σ′ = σ̄ for Di[σ0, . . . , σt+1] := Di−1[σ′0, . . . , σ
′
t] + 1.

Finally, for join nodes, we arbitrarily choose the computed states for the table of
one of the children nodes to represent the new entries and again use σ̄ to identify
the symmetrical of each low state (from the other node’s table).

Lemma 2. Given ε and a tree decomposition (X , T ) with T = (I, F ),X = {Xi|i ∈
I}, where T is rooted, binary and of depth O(log n), there exists a constant C,
such that for all rounded states σj ∈ Σd

δ , it is σj ≥ sj
(1+ε) ,∀vj ∈ Xi,∀i ∈ I, where

δ = ε
C logn .

Proof. First, observe that for any rounded state σ calculated using the ⊕ operator
we have σ ≤ s, where s is the state the exact algorithm would use instead. Let h be
the maximum depth of the recursive computations of any state σ we may require.
We now want to show by induction on h that it is always log1+δ(

s
σ ) ≤ h. For h = 1

and only one addition σ = 0⊕ d1, for some distance d1 with s = 0 + d1, we want
log(1+δ)(

s
σ ) ≤ 1. It is indeed log(1+δ)(

s
σ ) = log(1+δ)(d1)− blog(1+δ)(d1)c ≤ 1.

For the inductive step, let σ3 = σ2⊕ d2 and s3 = s2 + d2 be the final rounded
and exact values (at depth h), for some distance d2 and previous values σ2, s2
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(for h − 1). It is log(1+δ)(
s3
σ3

) = log(1+δ)(
s2+d2

(1+δ)
blog(1+δ)(σ2+d2)c ) = log(1+δ)(s2) +

log(1+δ)(1+ d2
s2

)−blog(1+δ)(σ2)+log(1+δ)(1+ d2
σ2

)c. This, after removal of the floor

function, is ≤ log(1+δ)(s2)+log(1+δ)(1+ d2
s2

)−(log(1+δ)(σ2)+log(1+δ)(1+ d2
σ2

))+1 =

log(1+δ)(s2)− log(1+δ)(σ2) + log(1+δ)(1 + d2
s2

)− log(1+δ)(1 + d2
σ2

) + 1. The claim
then follows, because log(1+δ)(s2)− log(1+δ)(σ2) = log(1+δ)(

s2
σ2

) ≤ h− 1 by the

inductive hypothesis, while also log(1+δ)(1+ d2
s2

)− log(1+δ)(1+ d2
σ2

) ≤ 0, as σ2 ≤ s2.

Thus we have log(1+δ)(
s
σ ) ≤ h, from which we get s

σ ≤ (1+δ)h. For σ ≥ s
(1+ε) ,

we require that (1 + δ)h ≤ (1 + ε), or h ≤ log(1+δ)(1 + ε) = log2(1+ε)
log2(1+δ)

, that gives

h ≤ ε
δ , for ε, δ ≈ 0, or δ ≤ ε

h . Next, observe that during the computations of the
algorithm, the maximum depth h of any computation can only increase by one
if some vertex is introduced in the tree decomposition, as paths to and from it
become available. This means no inductive computation we require can be of
depth larger than the depth of the tree decomposition T , giving h = C log n for
some constant C. ut

Theorem 7. There is an algorithm which, given an edge-weighted instance of d-
Scattered Set [G, k, d], a tree decomposition of G of width tw and a parameter
ε > 0, runs in time O∗((tw/ε)O(tw)) and finds a d/(1 + ε)-scattered set of size k,
if a d-scattered set of the same size exists in G.

Proof. Naturally, our modified algorithm making use of these rounded values to
represent the states will not perform the same computations as the exact version
given in Section 4. The new statement of correctness, taking into account the
approximate values now computed (and the switch to the maximization version),
is the following:

∀i ∈ I, ∀(σ0, . . . , σt) ∈ (Σd
δ )t+1, 0 ≤ t < tw : (13){

Di[σ0, . . . , σt] = |K| : K ⊆ Vi \Xi ∪ {vl ∈ Xi|σl = 0} : (14)

{∀u,w ∈ K : d(u,w) ≥ d

(1 + ε)
}∧ (15)

∧{∀vj ∈ Xi|0 < σj ≤
bd/2c
(1 + ε)

,∀u,w ∈ K|d(u, vj) ≤ d(w, vj) : (16)

d(u, vj) ≥ σj ∧ d(w, vj) ≥
d

(1 + ε)
− σj}∧ (17)

∧{∀vj ∈ Xi|σj >
bd/2c
(1 + ε)

,∀u ∈ K : d(u, vj) ≥ σj}∨ (18)

∨Di[σ0, . . . , σt] = −∞
}
. (19)

In words, the above states that for every node i and all possible state-
configurations (σ0, . . . , σt) ∈ (Σd

δ )t+1 (13), table entry Di[σ0, . . . , σt] contains the
size of a subset K of Vi (that includes vertices vl ∈ Xi of state sl = 0) (14), such
that the distance between every pair of vertices u,w in K is at least d/(1 + ε)
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(15), for every vertex vj ∈ Xi of low state σj ≤ bd/2c/(1 + ε) and a pair of
vertices u,w from K with u closer to vj than w (16), its distance to u is at least
equal to its state σj and its distance to w is at least d/(1 + ε)− σj (17), while
for every vertex vj ∈ Xi of high state σj > bd/2c/(1 + ε) and a vertex u from K,
its state σj is at most its distance from any vertex u (18), or if there is no such
K, we have Di[σ0, . . . , σt] = −∞ for this entry (19). This is shown by induction
on the nodes i ∈ I:

– Leaf node i with Xi = {v0}: This is the base case of our induction and the
initializing values of 1 for σ0 = 0 and 0 for σ0 > 0 are indeed the correct sizes
for K.

– Introduce node i with Xi = Xi−1 ∪ {vt+1}: For entries with 0 < σj ≤
bd/2c/(1 + ε), validity of (15,18) is not affected, while for (16-17): it is
σt+1 = σj⊕d(vt+1, vj) for some vertex vj ∈ Xi−1, for which, by the induction
hypothesis we have that σj ≤ d(u, vj) and d(w, vj) ≥ d/(1+ε)−σj , where u is
the closest selection to vj and w the second closest. To see the same holds for
vt+1, observe that σt+1 ≤ d(vt+1, vj) + d(u, vj) = d(u, vt+1) and d(w, vj) ≥
d/(1 + ε) − σj ⇒ σj + d(vt+1, vj) ≥ d/(1 + ε) − d(w, vj) + d(vt+1, vj) ⇒
σj + d(vt+1, vj) ≥ d/(1 + ε)− d(w, vt+1)⇒ σt+1 ≥ d/(1 + ε)− d(w, vt+1).
For entries with σt+1 > bd/2c/(1+ ε), validity of (15-17) is not affected, while
for (18): it is σt+1 ≤ d(vt+1, vj) + σj for some vj ∈ Xi−1, for which we have
σj ≤ d(u, vj) and thus also σt+1 ≤ d(vt+1, vj) + d(vj , u) = d(vt+1, u).
For entries with σt+1 = 0, observe that the low states σj of vertices vj ∈ Xi−1
in the new entry with d(vt+1, vj) ≤ bd/2c/(1 + ε) would need to be σj ≤
d(vt+1, vj) and also correspond to the minimum high original state σ′j such
that σj +σ′j ≥ d/(1 + ε), for which partial solution it is d(vj , u) ≥ σ′j ,∀u ∈ K
and thus d(vj , u) ≥ d/(1 + ε) − σj (16-17). For high states σj of vertices
vj ∈ Xi−1, it is d(vt+1, vj) ≥ σj (18) and finally, for (15), if there was some
u ∈ K such that u /∈ Xi− and d(u, vt+1 < d/(1 + ε), then there must be
some vj ∈ Xi−1 of new state σj and previous state σ′j (on the path between
u and vt+1) for which σj + σ′j < d/(1 + ε), contradicting the requirement
for introduction of vt+1 with σt+1 = 0: it is d(u, vt+1) < d/(1 + ε) ⇒
d(u, vj) + d(vt+1, vj) < d/(1 + ε) ⇒ σj + σ′j < d/(1 + ε), as it must be
σ′j ≤ d(u, vj) and also σj ≤ d(vt+1, vj).

– Forget node i with Xi = Xi−1 \{vt+1}: No modification to the exact dynamic
programming affects the correctness of (13-18), as, the right number is indeed
the maximum over all states for vt+1.

– Join node i with Xi = Xi−1 = Xi−2: For (15), if there was a pair u ∈
K ∩ Vi−1 \Xi−1, w ∈ K ∩ Vi−2 \Xi−2 with d(u,w) < d/(1 + ε), then there
must be some vertex vj ∈ Xi (on the path between the two) for which
σj + σ̄j < d/(1 + ε) (as above). For (16-18), observe that for vertices of low
state σj , lines (16-17) must have been true for either i− 1 or i− 2 and (18)
for the other, while for vertices vj of high state σj , it again suffices that (18)
must have been true for both.

For a node i ∈ I, let Ui(k, s0, . . . , st) = {K ⊆ Vi|K∩Xi = {vj ∈ Xi|sj = 0}}
be the set of all d-scattered sets in Gi of size k for this state-configuration
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(s0, . . . , st) (as in the proof of Theorem 2), Ui(k, σ0, . . . , σt) = {K ⊆ Vi|K ∩Xi =
{vj ∈ Xi|σj = 0} be the set of all subsets K of Vi of size k for the rounded
state-configuration (σ0, . . . , σt) (computed by our approximation algorithm) and
Ui(k,

s
1+ε ) be the set of all d/(1 + ε)-scattered sets of size k in Gi. Consider a

set K ∈ Ui(k, s0, . . . , st) and let (σ0, . . . , σt) be the state-configuration resulting
from rounding each sj down to its closest integer power of (1 + δ), or σj =

(1 + δ)blog(1+δ)(sj)c,∀j ∈ [0, t]. As |K| = k and for any pair u,w ∈ K, we have
d(u,w) ≥ d > d

(1+ε) , we want to show that the requirements of (σ0, . . . , σt) also

hold for K. By Lemma 2, we know that sj ≥ σj ≥ sj
(1+ε) for all j ∈ [0, t]. Now,

for each σj ∈ (σ0, . . . , σt), σj ≤ sj gives σj ≤ d(u, vj) for the closest u ∈ K to vj ,

while if also σj ≤ bd/2c(1+ε) , then
sj

(1+ε) ≤
bd/2c
(1+ε) and sj ≤ bd/2c (i.e. sj is also low)

and we have that d−sj ≤ d(w, vj) for w ∈ K being the second closest to vj , from

which we get d
(1+ε) −

sj
(1+ε) ≤

d(w,vj)
(1+ε) ⇒ d

(1+ε) −σj ≤
d(w,vj)
(1+ε) ≤ d(w, vj), i.e. state-

configuration (σ0, . . . , σt) also holds for set K. This means K ∈ Ui(k, σ0, . . . , σt)
and thus we have Ui(k, s0, . . . , st) ⊆ Ui(k, σ0, . . . , σt). Further, since for any K
our approximation algorithm will compute, it is d(u,w) ≥ d/(1 + ε),∀u,w ∈ K,
we also have Ui(σ0, . . . , σt) ⊆ Ui(k,

s
(1+ε) ). Due to these considerations, if a d-

scattered set of size k exists in G, our algorithm will be able to return a set K
with |K| = k, that will be a d/(1 + ε)-scattered set of G.

The algorithm is then the following: first, according to the statement of Lemma
2, we select δ = ε

C logn , that we use to define set Σd
δ and then we use the algorithm

of Theorem 2, modified as described above, on the bounded-height transformation
of nice tree decomposition (X , T ). Correctness of the algorithm and justification
of the approximation bound are given above, while the running time crucially
depends on the size of Σd

δ being |Σd
δ | = O(log(1+δ) d) = O( log d

log(1+δ) ) = O( log d
δ ),

where we used the approximation log(1 + δ) ≈ δ for sufficiently small δ (i.e.
sufficiently large n). This gives O(log n/ε)O(tw) and the statement is then implied
by Lemma 3.

As a final note, observe that due to the use of the b·c function in the definition
of our ⊕ operator, all our values will be rounded down, in contrast to the original
version of the technique (from [24]), where depending on a randomly chosen
number ρ, the values could be rounded either down or up. This means there
will be some value x, such that x ⊕ 1 = x, or (1 + δ)x = (1 + δ)blog(1+δ)(x+1)c

(we would have x ≈ 1/δ). One may be tempted to conceive of a pathological
instance consisting of a long path on n vertices and d >> x, along with a simple
path decomposition for it (that is essentially of the same structure), where the
computations for each rounded state σ would “get stuck” at this value x. In
fact, the transformation of [6] would give a tree decomposition of height O(log n)
for this instance, whose structure would be the following: the leaf nodes would
correspond to one vertex of the path each, while at (roughly) each height level
i, sub-paths of length 2i would be joined together. Thus each join node t that
corresponds to some sub-path of length 2i (let Xt = {a, b, c, d}) would have two
child branches, consisting of two forget nodes, two introduce nodes and a previous
join node on each side (let these be t− 1, t− 2), computing sub-paths of length
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2i−1 (with Xt−1 = {a, a′, b′, b} and Xt−2 = {c, c′, d′, d}). The vertices forgotten
at each branch would be the middle vertices of the sub-path of length 2i−1 already
computed at the previous join node of this branch (i.e. a′, b′ for the t− 1 side and
c′, d′ for the other), while the introduced vertices would be the endpoints of the
sub-path of length 2i−1 computed at the other branch attached to this join node
(i.e. c, d for the t− 1 side and a, b for the other). In this way, in each branch (and
partial solution) there will be one vertex (c or b) for which the rounded state
would need to be ≤ 1⊕ the rounded state σ of some neighbor (b or c) and one
vertex (d or a) for which the ⊕ operator would be applied between the state σ of
some non-adjacent vertex (a, b or c for the t− 1 side and c, d or b for the other)
and their distance (e.g. d(b, d) and d(c, a)), these being at least 2i−1. In this way,
the algorithm will not have to compute any series of rounded states sequentially
by ⊕1 and as, by Lemma 2, we have that for all nodes i ∈ I and vertices vj ∈ Xi,
it is σj ≥ sj

(1+ε) , for all σj ∈ Σd
δ , the rounded states used by the algorithm for

these introduce/join nodes will never be more than a factor of (1 + ε) from the
ones used by the exact algorithm on the same tree decomposition. ut
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