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Abstract. Independent Set Reconfiguration is one of the most
well-studied problems in the setting of combinatorial reconfiguration. It is
known that the problem is PSPACE-complete even for graphs of bounded
bandwidth. This fact rules out the tractability of parameterizations by
most of well-studied structural parameters as most of them generalize
bandwidth. In this paper, we study the parameterization by modular-
width, which is not comparable with bandwidth. We show that the prob-
lem parameterized by modular-width is fixed-parameter tractable under
all previously studied rules TAR, TJ, and TS. The result under TAR
resolves an open problem posed by Bonsma [WG 2014, JGT 2016].
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1 Introduction

In a reconfiguration problem, we are given an instance of a search problem
together with two feasible solutions. The algorithmic task there is to decide
whether one solution can be transformed to the other by a sequence of prescribed
local modifications while keeping the feasibility of intermediate states. Recently,
reconfiguration versions of many search problems have been studied (see [14,23]).
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Independent Set Reconfiguration is one of the most well-studied recon-
figuration problems. In this problem, we are given a graph and two independent
sets. Our goal is to find a sequence of independent sets that represents a step-
by-step modification from one of the given independent sets to the other. There
are three local modification rules studied in the literature: Token Addition and
Removal (TAR) [3,19,22], Token Jumping (TJ) [4,5,16,17,18], and Token Sliding
(TS) [1,2,8,10,13,15,21]. Under TAR, given a threshold k, we can remove or add
any vertices as long as the resultant independent set has size at least k. (When
we want to specify the threshold k, we call the rule TAR(k).) TJ allows to swap
one vertex in the current independent set with another vertex not dominated by
the current independent set. TS is a restricted version of TJ that additionally
asks the swapped vertices to be adjacent.

It is known that Independent Set Reconfiguration is PSPACE-complete
under all three rules for general graphs [16], for perfect graphs [19], and for pla-
nar graphs of maximum degree 3 [13] (see [4]). For claw-free graphs, the problem
is solvable under all three rules [4]. For even-hole-free graphs (graphs without
induced cycles of even length), the problem is known to be polynomial-time
solvable under TAR and TJ [19], while it is PSPACE-complete under TS even
for split graphs [1]. Under TS, forests [8] and interval graphs [2] form maximal
known subclasses of even-hole-free graphs for which Independent Set Re-
configuration is polynomial-time solvable. For bipartite graphs, the problem
is PSPACE-complete under TS and, somewhat surprisingly, it is NP-complete
under TAR and TJ [21].

Independent Set Reconfiguration is studied also in the setting of pa-
rameterized computation. (See the recent textbook [7] for basic concepts in pa-
rameterized complexity.) It is known that there is a constant b such that the
problem is PSPACE-complete under all three rules even for graphs of bandwidth
at most b [25]. Since bandwidth is a lower bound of well-studied structural pa-
rameters such as pathwidth, treewidth, and clique-width, this result rules out
FPT (and even XP) algorithms with these parameters. Given this situation, Bon-
sma [3] asked whether Independent Set Reconfiguration parameterized by
modular-width is tractable under TAR and TJ. The main result of this paper
is to answer this question by presenting an FPT algorithm for Independent
Set Reconfiguration under TAR and TJ parameterized by modular-width.
We also show that under TS the problem allows a much simpler FPT algorithm.

Our results in this paper can be summarized as follows:6

Theorem 1.1. Under all three rules TAR, TJ, and TS, Independent Set
Reconfiguration parameterized by modular-width mw can be solved in time
O∗(2mw).

In Section 3, we give our main result for TAR (Theorem 3.9), which implies the
result for TJ (Corollary 3.10). The FPT algorithm under TS is given in Section 4
(Theorem 4.7).

The proofs marked with F’s are omitted due to the space limitation.

6 The O∗(·) notation suppresses factors polynomial in the input size.
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2 Preliminaries

Let G = (V,E) be a graph. For a set of vertices S ⊆ V , we denote by G[S] the
subgraph induced by S. For a vertex set S ⊆ V , we denote by G− S the graph
G[V \ S]. For a vertex u ∈ V , we write G− u instead of G− {u}. For u, v ∈ S,
we denote S ∪ {u} by S + u and S \ {v} by S − v, respectively. We use α(G) to
denote the size of a maximum independent set of G. For two sets S,R we use
S M R to denote their symmetric difference, that is, the set (S \ R) ∪ (R \ S).
For an integer k we use [k] to denote the set {1, . . . , k}. For a vertex v ∈ V , its
(open) neighborhood is denoted by N(v). The open neighborhood of a set S ⊆ V
of vertices is defined as N(S) =

⋃
v∈S N(v) \S. A component of G is a maximal

vertex set S ⊆ V such that G contains a path between each pair of vertices in
S.

In the rest of this section, we are going to give definitions of the terms used
in the following formalization of the main problem:

Problem: Independent Set Reconfiguration under TAR(k)
Input: A graph G, an integer k, and independent sets S and S′ of G.
Parameter: The modular-width of the input graph mw(G).
Question: Does S !k S

′ hold?

2.1 TAR(k) rule

Let S and S′ be independent sets in a graph G and k an integer. Then we write

S
G↔k S

′ if |S M S′| ≤ 1 and min{|S|, |S′|} ≥ k. If G is clear from the context we
simply write S ↔k S

′. Here S ↔k S
′ means that S and S′ can be reconfigured to

each other in one step under the TAR(k) rule, which stands for “Token Addition
and Removal”, under the condition that no independent set contains fewer than

k vertices (tokens). We write S
G
!k S

′, or simply S !k S
′ if G is clear, if there

exists ` ≥ 0 and a sequence of independent sets S0, . . . , S` with S0 = S, S` = S′

and for all i ∈ [`] we have Si−1 ↔k Si. If S !k S
′ we say that S′ is reachable

from S under the TAR(k) rule.
We recall the following basic facts.

Observation 2.1. For all integers k the relation defined by !k is an equiva-
lence relation on independent sets of size at least k. For any graph G, integer k,
and independent sets S,R, if S !k R, then S !k−1 R. For any graph G and
independent sets S,R we have S !0 R.

2.2 TJ and TS rules

Under the TJ rule, one step is formed by a removal of a vertex and an addition
of a vertex. As this rule does not change the size of the independent set, we
assume that the given initial and target independent sets are of the same size. In
other words, two independent sets S and S′ with |S| = |S′| can be reconfigured
to each other in one step under the TJ rule if |S M S′| = 2. It is known that the
TJ reachability can be seen as a special case of TAR reachability as follows.
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Proposition 2.2 ([19]). Let S and R be independent sets of G with |S| = |R|.
Then, S and R are reachable to each other under TJ if and only if S !|S|−1 R.

One step under the TS rule first has to be a TJ step, and additionally has to
satisfy that the removed and added vertices are adjacent. Intuitively, one step
in a TS sequence “slides” a token along an edge. We postpone the introduction
of notation for TS until Section 4 to avoid any confusions.

2.3 Modular-width

In a graph G = (V,E) a module is a set of vertices M ⊆ V with the property that
for all u, v ∈M and w ∈ V \M , if {u,w} ∈ E, then {v, w} ∈ E. In other words,
a module is a set of vertices that have the same neighbors outside the module.
A graph G = (V,E) has modular-width at most k if it satisfies at least one of
the following conditions (i) |V | ≤ k, or (ii) there exists a partition of V into at
most k sets V1, V2, . . . , Vs, such that G[Vi] has modular-width at most k and Vi
is a module in G, for all i ∈ [s]. We will use mw(G) to denote the minimum k for
which G has modular-width at most k. We recall that there is a polynomial-time
algorithm which, given a graph G = (V,E) produces a non-trivial partition of
V into at most mw(G) modules [6,12,24] and that deleting vertices from G can
only decrease the modular-width. We also recall that Maximum Independent
Set is solvable in time O∗(2mw). Indeed, a faster algorithm with running time
O∗(1.7347mw) is known [9].

A graph has neighborhood diversity at most k if its vertex set can be par-
titioned into k modules, such that each module induces either a clique or an
independent set. We use nd(G) to denote the minimum neighborhood diversity
of G, and recall that nd(G) can be computed in polynomial time [20] and that
nd(G) ≥ mw(G) for all graphs G [11].

It can be seen that the modular-width of a graph is not smaller than its
clique-width. On the other hand, we can see that treewidth, pathwidth, and
bandwidth are not comparable to modular-width. To see this, observe that the
complete graph of n vertices has treewidth n−1 and modular-width 2, and that
the path of n vertices has treewidth 1 and modular-width n for n ≥ 4. Our
positive result and the hardness result by Wrochna [25] together give Fig. 1 that
depicts a map of structural graph parameters with a separation the complexity
of Independent Set Reconfiguration.

3 FPT Algorithm for Modular-Width under TAR

In this section we present an FPT algorithm for the TAR(k)-reachability problem
parameterized by modular-width. The main technical ingredient of our algorithm
is a sub-routine which solves a related problem: given a graph G, an independent
set S, and an integer k, what is the largest independent set that is reachable from
S under TAR(k)? This sub-routine relies on dynamic programming: we present
(in Lemma 3.4) an algorithm which answers this “maximum extensibility” ques-
tion, if we are given tables with answers for the same question for all the modules
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Fig. 1. The complexity of Independent Set Reconfiguration under TAR, TJ, and
TS parameterized by structural graph parameters.

in a non-trivial partition of the input graph. This results in an algorithm (The-
orem 3.5) that solves this problem on graphs of small modular-width, which we
then put to use in Section 3.2 to solve the reconfiguration problem.

3.1 Computing the Largest Reachable Set

In this section we present an FPT algorithm (parameterized by modular-width)
which computes the following value:

Definition 3.1. Given a graph G, an independent set S, and an integer k, we
define λ(G,S, k) as the size of the largest independent set S′ such that S !k S

′.

In particular, we will present a constructive algorithm which, given G,S, k
will return an independent set S′ such that |S′| = λ(G,S, k), as well as a recon-
figuration sequence proving that S !k S

′.
We begin by tackling an easier case: the case when the parameter is the

neighborhood diversity.

Lemma 3.2 (F). There is an algorithm which, given a graph G, an independent
set S, and an integer k, returns an independent set S′, with |S′| = λ(G,S, k),
and a reconfiguration sequence proving that S !k S

′, in time O∗(2nd(G)).

Before presenting the main algorithm of this section, let us also make a useful
observation: once we are able to reach a configuration that contains a sufficiently
large number of vertices from a module, we can safely delete a vertex from the
module (bringing us closer to the case where Lemma 3.2 will apply).

Lemma 3.3 (F). Let G be a graph, S be an independent set of G, k an integer,
and M a module of G. Suppose there exists an independent set A ⊂ M such
that (S ∩ M) ⊆ A and |A| = α(G[M ]). Then, for all u ∈ M \ A we have
λ(G,S, k) = λ(G− u, S, k).

We are now ready to present our main dynamic programming procedure.
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Lemma 3.4 (F). Suppose we are given the following input:

1. A graph G = (V,E), an integer k, and an independent set S with |S| ≥ k.
2. A partition of V into r ≤ mw(G) non-empty modules, V1, . . . , Vr.
3. For each i ∈ [r], for each j ∈ [|S ∩ Vi|] an independent set Ri,j, such that
|Ri,j | = λ(G[Vi], S ∩ Vi, j), and a transformation sequence proving that (S ∩
Vi)

G[Vi]
!j Ri,j.

Then, there exists an algorithm which returns an independent set R of G, such
that |R| = λ(G,S, k), and a transformation sequence proving that S !k R,
running in time O∗(2mw(G)).

We thus arrive to the main theorem of this section.

Theorem 3.5. There exists an algorithm which, given a graph G, an indepen-
dent set S, and an integer k, runs in time O∗(2mw(G)) and outputs an indepen-
dent set S′ such that |S′| = λ(G,S, k) and a TAR(k) transformation S !k S

′.

Proof. We perform dynamic programming using Lemma 3.4. More precisely, our
goal is, given G and S, to produce for each value of j ∈ [|S|] an independent set
Rj such that S !k Rj and |Rj | = λ(G,S, j). Clearly, if we can solve this more
general problem in time O∗(2mw(G)) we are done.

Our algorithm works as follows: first, it computes a modular decomposition
of G of minimum width, which can be done in time at most O(n2) [12]. If
|V (G)| ≤ mw(G) then the problem can be solved in O∗(2mw(G)) by brute force
(enumerating all independent sets of G), or even by Lemma 3.2. We therefore
assume thatG has a non-trivial partition into r ≤ mw(G) modules V1, . . . , Vr. We
call our algorithm recursively for each G[Vi], and obtain for each i ∈ [r] and j ∈
[|S∩Vi|] a set Ri,j such that |Ri,j | = λ(G[Vi], S∩Vi, j) and a transformation (S∩
Vi)

G[Vi]
!j Ri,j . We use this input to invoke the algorithm of Lemma 3.4 for each

value of j ∈ [|S|]. This allows us to produce the sets Rj and the corresponding
transformations.

Suppose that β ≥ 2 is a constant such that the algorithm of Lemma 3.4 runs
in time at mostO(2mw(G)nβ). Our algorithm runs in time at mostO(2mw(G)nβ+2).
This can be seen by considering the tree representing a modular decomposition
of G. In each node of the tree (that represents a module of G) our algorithm
makes at most n calls to the algorithm of Lemma 3.4. Since the modular decom-
position has at most O(n) nodes, the running time bound follows. ut

3.2 Reachability

In this section we will apply the algorithm of Theorem 3.5 to obtain an FPT
algorithm for the TAR(k) reconfiguration problem parameterized by modular-
width. The main ideas we will need are that (i) using the algorithm of Theorem
3.5 we can decide if it is possible to arrive at a configuration where a module
is empty of tokens (Lemma 3.6) (ii) if a module is empty in both the initial
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and target configurations, we can replace it by an independent set (Lemma 3.7)
and (iii) the reconfiguration problem is easy on graphs with small neighborhood
diversity (Lemma 3.8). Putting these ideas together we obtain an algorithm
which can always identify an irrelevant vertex which we can delete if the input
graph is connected. If the graph is disconnected, we can use ideas similar to those
of [3] to reduce the problem to appropriate sub-instances in each component.

Lemma 3.6. There is an algorithm which, given a graph G, an independent set
S, a module M of G, and an integer k, runs in time O∗(2mw(G)) and either
returns a set S′ with S′ ∩M = ∅ and S !k S

′ or correctly concludes that no
such set exists.

Proof. We assume that S ∩M 6= ∅ (otherwise we simply return S).
Let H be the graph obtained by deleting from G all vertices of V \M that

have a neighbor in M . We invoke the algorithm of Theorem 3.5 to compute a set

S′ in H such that S
H

!k S
′ and |S′| = λ(H,S, k). If |S′ \M | ≥ k then we return

as solution the set S′ \M , and as transformation the transformation sequence
returned by the algorithm, to which we append moves that delete all vertices of
S′ ∩M . If |S′ \M | < k we answer that no such set exists.

Let us now argue for correctness. If the algorithm returns a set S′, it also
returns a TAR(k) transformation from S to S′ in H; this is also a transformation
in G, and since S′ ∩M = ∅, the solution is correct.

Suppose then that the algorithm returns that no solution exists, but for the

sake of contradiction there exists a T with S
G

!k T and T ∩M = ∅. Among all
such sets T select the one at minimum reconfiguration distance from S and let
S0 = S, S1, . . . , S` = T be a shortest reconfiguration sequence. We claim that
this is also a valid reconfiguration sequence in H. Indeed, for all j ∈ [`− 1], the
set Sj contains a vertex from M (otherwise we would have a shorter sequence),
therefore may not contain any deleted vertex. As a result, if a solution T exists,

then S
H

!k T . Let A be a maximum independent set of G[M ]. We observe
that (i) |T \M | ≥ k since T is reachable with TAR(k) moves and T ∩M = ∅
(ii) T

H
!k (T ∪ A). However, this gives a contradiction, because we now have

S
H

!k (T∪A) and this set is strictly larger than the set returned by the algorithm
of Theorem 3.5 when computing λ(H,S, k). ut

Lemma 3.7. Let G be a graph, k an integer, M a module of G, and S, T two
independent sets of G such that S ∩M = T ∩M = ∅. Let A be a maximum

independent set of G[M ]. Then, for all u ∈M \A we have S
G

!k T if and only

if S
G−u
!k T .

Proof. The proof is similar to that of Lemma 3.3. Specifically, since u 6∈ S

and u 6∈ T , it is easy to see that S
G−u
!k T implies S

G
!k T . Suppose then

that S
G

!k T and we have a sequence S0 = S, S1, . . . , S` = T . We construct
a sequence S′0 = S, S′1, . . . , S

′
` such that for all i ∈ [`] we have |Si| = |S′i|,

Si \M = S′i \M , and S′i ⊆ A. This can be done inductively: for S′0 the desired
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properties hold; and for all i ∈ [`] we can prove that if the properties hold for
S′i−1, then we can construct S′i in the same way as in the proof of Lemma 3.3
(namely, we perform the same moves as Si outside of M , and pick an arbitrary
vertex of A when Si adds a vertex of M). ut

Lemma 3.8. There is an algorithm which, given a graph G, an integer k, and
two independent sets S, T , decides if S !k T in time O∗(2nd(G)).

Proof. The proof is similar to that of Lemma 3.2, but we need to carefully
handle some corner cases. We are given a partition of G into r ≤ nd(G) sets
V1, . . . , Vr, such that each Vi induces a clique or an independent set. Suppose
Vi induces a clique. We use the algorithm of Lemma 3.6 with input (G,S,Vi,k)
and with input (G,T ,Vi,k) to decide if it is possible to empty Vi of tokens. If
the algorithm gives different answers we immediately reject, since there is a
configuration that is reachable from S but not from T . If the algorithm returns
S′, T ′ with S′ ∩ Vi = T ′ ∩ Vi = ∅, then the problem reduces to deciding if
S′ !k T

′. However, by Lemma 3.7 we can delete all the vertices of Vi except
one and this does not change the answer. Finally, if the algorithm responds
that Vi cannot be empty in any configuration reachable from S or T then, if
S ∩ Vi 6= T ∩ Vi we immediately reject, while if S ∩ Vi = T ∩ Vi we delete from
the input Vi and all its neighbors and solve the reconfiguration problem in the
instance (G[V \N [Vi]], k − 1, S \ Vi, T \ Vi).

After this preprocessing all sets Vi are independent. We now construct an
auxiliary graph G′ as in Lemma 3.2, namely, our graph has a vertex for every
independent set S of G with |S| ≥ k such that for all i ∈ [r] either S ∩ Vi = ∅ or
Vi ⊆ S. Again, we have an edge between S1, S2 if S1 M S2 = Vi for some i ∈ [r].
We can assume without loss of generality that S, T are represented in this graph
(if there exists Vi such that 0 < |S∩Vi| < |Vi| we add to S all remaining vertices
of Vi). Now, S ! T if and only if S is reachable from T in G′, and this can be
checked in time linear in the size of G′. ut

Theorem 3.9 (TAR). There is an algorithm which, given a graph G, an integer
k, and two independent sets S, T , decides if S !k T in time O∗(2mw(G)).

Proof. Our algorithm considers two cases: if G is connected we will attempt to
simplify G in a way that eventually produces either a graph with small neighbor-
hood diversity or a disconnected graph; if G is disconnected we will recursively
solve an appropriate subproblem in each component.

First, suppose that G is connected. We compute a modular decomposition of
G which gives us a partition of V into r ≤ mw(G) modules V1, . . . , Vr. If for all
i ∈ [r] we have that G[Vi] is an independent set, then nd(G) ≤ r and we invoke
the algorithm of Lemma 3.8. Suppose then that for some i ∈ [r], G[Vi] contains
at least one edge. We invoke the algorithm of Lemma 3.6 on input (G,S, Vi, k)
and on input (G,T, Vi, k). If the answers returned are different, we decide that S
is not reachable from T in G, because from one set we can reach a configuration
that contains no vertex of Vi and from the other we cannot.
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If the algorithm of Lemma 3.6 returned to us two sets S′, T ′ with S′ ∩ Vi =
T ′ ∩ Vi = ∅ then by transitivity we know S ! T if and only if S′ ! T ′. We
compute a maximum independent set A of G[Vi] and delete from our graph a
vertex u ∈ Vi \A. Such a vertex exists, since G[Vi] is not an independent set. By
Lemma 3.7 deleting u does not affect whether S′ ! T ′, so we call our algorithm
with input (G− u, k, S′, T ′), and return its response.

On the other hand, if the algorithm of Lemma 3.6 concluded that no set
reachable from either S or T has empty intersection with Vi, we find a vertex
u ∈ V \ Vi that has a neighbor in Vi and delete it, that is, we call our algorithm
with input (G− u, k, S, T ). Such a vertex u exists because G is connected. This
recursive call is correct because any configuration reachable from S or T contains
some vertex of Vi, which is a neighbor of u, so no reachable configuration uses
u.

We note that if G is connected, all the cases described above will make a
single recursive call on an input that has strictly fewer vertices.

Suppose now that G is not connected and there are s connected components
C1, C2, . . . , Cs. We will assume that |S| = λ(G,S, k) and |T | = λ(G,T, k). This
is without loss of generality, since we can invoke the algorithm of Theorem 3.5
and in case |S| < λ(G,S, k) replace S with the set S′ returned by the algorithm
while keeping an equivalent instance (similarly for T ).

As a result, we can assume that |S| = |T |, otherwise the answer is trivially
no. More strongly, if there exists a component Ci such that |S ∩ Ci| 6= |T ∩ Ci|
we answer no. To see that this is correct, we argue that for all S′ such that
S !k S

′ we have |S′ ∩ Ci| ≤ |S ∩ Ci|. Indeed, suppose there exists S′ such
that for some i ∈ [s] we have |S′ ∩ Ci| > |S ∩ Ci| and S ! S′. Among such
configurations S′ select one that is at minimum reconfiguration distance from S
and let S0 = S, S1, . . . , S` = S′ be a shortest reconfiguration from S to S′. Then
for all j ∈ [`] we have |S \ Ci| ≥ |Sj \ Ci| (otherwise we would have an S′ that
is at shorter reconfiguration distance from S). This means that the sequence
S0 ∩ Ci, S1 ∩ Ci, . . . , S` ∩ Ci is a TAR(k − |S \ Ci|) transformation of S ∩ Ci to
S′ ∩Ci in G[Ci]. But this transformation proves that the set (S \Ci)∪ (S′ ∩Ci)
is TAR(k) reachable from S in G, and since this set is larger than S we have a
contradiction.

For each i ∈ [s] we now consider the reconfiguration instance given by the
following input: (G[Ci], k− |S \Ci|, S ∩Ci, T ∩Ci). We call our algorithm recur-
sively for each such instance. If the answer is yes for all these instances we reply
that S is reachable from T , otherwise we reply that the sets are not reachable.

To argue for correctness we use induction on the depth of the recursion. Sup-
pose that the algorithm correctly concludes that the answer to all sub-instances
is yes. Then, there does indeed exist a transformation S ! T as follows: starting
from S, for each i ∈ [s] we keep S \Ci constant and perform in G[Ci] the trans-

formation (S ∩Ci)
G[Ci]
! k−|S\Ci| (T ∩Ci). At each step this gives a configuration

where S and T agree in more components. Furthermore, since |S∩Ci| = |T ∩Ci|
for all i ∈ [s], this is a valid TAR(k) reconfiguration.
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Suppose now that the answer is no for the instance (G[Ci], k − |S \ Ci|, S ∩
Ci, T∩Ci). Suppose also, for the sake of contradiction, that there exists a TAR(k)
reconfiguration S0 = S, S1, . . . , S` = T . As argued above, any configuration S′

reachable from S has |S′ ∩ Ci′ | ≤ |S ∩ Ci′ | for all i′ ∈ [s]. This means that
|S \Ci| ≥ |Sj \Ci| for all j ∈ [`]. Hence, the sequence S0∩Ci, S1∩Ci, . . . , S`∩Ci
gives a valid TAR(k−|S \Ci|) reconfiguration in G[Ci], which is a contradiction.

Finally, it is not hard to see that the algorithm runs in time O∗(2mw(G)),
because in the case of disconnected graphs we make a single recursive call for
each component. ut

Theorem 3.9 and Proposition 2.2 give an FPT algorithm with the same run-
ning time for TJ.

Corollary 3.10 (TJ). There is an algorithm which, given a graph G and two
independent sets S, T , decides the TJ reachability between S and T in time
O∗(2mw(G)).

4 FPT Algorithm for Modular-Width under TS

We now present an FPT algorithm deciding the TS-reachability parameterized
by modular-width. The problem under TS is much easier than the one under TAR
since we can reduce the problem to a number of constant-size instances that can
be considered separately. To see this, we first observe that the components can
be considered separately. We then further observe that we only need to solve
the case where each maximal nontrivial module contains at most one vertex of
the current independent set. Finally, we show that the reachability problem on
the reduced case thus far is equivalent to a generalized reachability problem on
a graph of order at most mw(G), where G is the original graph.

Let S and S′ be independent sets of G with |S| = |S′|. Recall that S and S′

can be reachable by one step under TS if |S M S′| = 2 and the two vertices in

S M S′ are adjacent. We denote this relation by S
G↔ S′, or simply by S ↔ S′

if G is clear from the context. We write S
G
! S′ (or simply S ! S′) if there

exists ` ≥ 0 and a sequence of independent sets S0, . . . , S` with S0 = S, S` = S′

and for all i ∈ [`] we have Si−1 ↔ Si. If S ! S′ we say that S′ is reachable from
S under the TS rule. Observe that the relation defined by ! is an equivalence
relation on independent sets.

The first easy observation is that the TS rule cannot move a token to a
different component since a TS step is always along an edge (and thus within a
component). This is formalized as follows.

Observation 4.1. Let G be a graph, S, S′ independent sets of G, and C1, . . . , Cc

the components of G. Then, S
G
! S′ if and only if (S ∩ V (Ci))

G[V (Ci)]
! (S′ ∩

V (Ci)) for all i ∈ [c].

The next lemma, which is still an easy one, is a key tool in our algorithm.
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Lemma 4.2 (F). Let G be a graph, M a module of G, and S an independent

set in G such that |S∩M | ≥ 2. Then, for every independent set S′ in G, S
G
! S′

if and only if S′ ∩N(M) = ∅ and S
G−N(M)

! S′.

Lemma 4.2 implies that S with |S ∩M | ≥ 2 and S′ with |S′ ∩M | ≤ 1 are not
reachable to each other. This fact in the following form will be useful later.

Corollary 4.3. Let G be a graph, M a module of G, and S an independent set
in G such that |S ∩M | ≤ 1. Then, for every independent set S′ in G such that
S ! S′, it holds that |S′ ∩M | ≤ 1.

We now show that a module sharing at most one vertex with both initial
and target independent sets can be replaced with a single vertex, under an
assumption that we may solve a slightly generalized reachability problem (which
is still trivial on a graph of constant size).

Lemma 4.4 (F). Let G be a graph, M a module of G with |M | ≥ 2, and S, S′

independent sets of G with |S| = |S′|. If |M ∩ (S ∪S′)| ≤ 1, then S
G
! S′ if and

only if S
G−v
! S′ for every v ∈M \ (S ∪ S′).

Lemma 4.5 (F). Let G be a graph, M a module of G, and S, S′ independent
sets of G with |S| = |S′|. If M ∩S = {u}, M ∩S′ = {v}, u 6= v, and u and v are

in the same component of G[M ], then S
G
! S′ if and only if S

G−v
! S′ − v + u.

Lemma 4.6 (F). Let G be a graph, M a module of G, and S, S′ independent
sets of G with |S| = |S′|. If M ∩S = {u}, M ∩S′ = {v}, u 6= v, and u and v are

in different components of G[M ], then S
G
! S′ if and only if S

G−v
! S′ − v + u

and there is an independent set T in G− v such that T ∩M = ∅ and S
G−v
! T .

Now we are ready to present our algorithm for the TS-reachability problem.

Theorem 4.7 (TS, F). There is an algorithm which, given a graph G and two
independent sets S, T , decides if S ! T in time O∗(2mw(G)).
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A Omitted Proofs in Section 3

Proof (Lemma 3.2). Assume thatG = (V,E) is partitioned into r sets V1, V2, . . . , Vr
such that each set induces a clique or an independent set. In fact, we may assume
without loss of generality that Vi is an independent set for each i ∈ [r], because
if Vi is a clique we can delete all but one of its vertices without affecting the
answer.

Consider now the auxiliary graph G′ which has a vertex for each independent
set S of G that satisfies the following: (i) |S| ≥ k (ii) for all i ∈ [r] either Vi ⊆ S
or S ∩ Vi = ∅. There are at most 2r vertices in G′. We add an edge between
S1, S2 in G′ if S1 M S2 = Vi for some i ∈ [r]. As a result, G′ has at most r2r

edges.
We observe that the set S′ we seek is represented by a vertex of G′ (S′ must

be maximal, therefore it fully contains all modules it intersects). Furthermore,
we may assume that the set S we have been given is also represented by a vertex
of G′ (because if 0 < |S ∩ Vi| < |Vi| we may add to S the remaining vertices of
Vi and we still have a set that is reachable from S). We note that S !k S

′ if
and only if there is a path from S to S′ in G, and it is not hard to construct
a reconfiguration sequence in G given a path in G′. As a result, the problem
reduces to determining the vertices of G′ which are reachable from S, and then
determining which among these represents the largest independent set, both of
which can be solved in time linear in the size of G′. ut

Proof (Lemma 3.3). We assume that there exists a u ∈ M \ A (otherwise the
claim is vacuously true). We have u 6∈ S, since (S ∩ M) ⊆ A and u 6∈ A.
Therefore, λ(G,S, k) ≥ λ(G − u, S, k), since any transformation which can be
performed in G−u can also be performed in G. We therefore need to argue that
λ(G− u, S, k) ≥ λ(G,S, k).

Let T be an independent set of G such that S
G

!k T and |T | = λ(G,S, k).
Consider a shortest TAR(k) reconfiguration from S to T , say S0 = S, S1, . . . , S` =
T . We construct a TAR(k) reconfiguration S′0 = S, S′1, . . . , S

′
` with the property

that for all i ∈ [`] we have |Si| = |S′i|, Si \M = S′i \M , and (S′i ∩M) ⊆ A.

If we achieve this we are done, since we have that S
G−u
!k S

′
` and |S′`| = |T | =

λ(G,S, k).
We will construct the new reconfiguration sequence inductively. First, S′0 = S

satisfies the desired properties. So, suppose that for some i ∈ [`] we have |S′i−1| =
|Si−1|, Si−1 \M = S′i−1 \M , and (S′i−1 ∩M) ⊆ A. We now consider the four
possible cases corresponding to single reconfiguration moves from Si−1 to Si. If
Si = Si−1\{v}, for some v ∈ Si−1\M , we set S′i = S′i−1\{v}; this is a valid move
since v ∈ S′i−1. If Si = Si−1\{v}, for some v ∈ Si−1∩M , then it must be the case
that S′i−1 ∩M 6= ∅. Select an arbitrary v′ ∈ S′i−1 ∩M and set S′i = S′i−1 \ {v′}.
If Si = Si−1 ∪ {v} for v ∈ V \M , we set S′i = S′i−1 ∪ {v}; it is not hard to see
that S′i is still an independent set and satisfies the desired properties. Finally,
if Si = Si−1 ∪ {v} for v ∈ M , we observe that |Si−1 ∩M | < α(G[M ]) = |A|
(otherwise Si would not be independent). Since |Si−1 ∩M | = |S′i−1 ∩M | there
exists v′ ∈ A \ S′i−1. We therefore set S′i = S′i−1 ∪ {v′}. ut



14 Belmonte et al.

Proof (Lemma 3.4). We describe an iterative procedure which maintains the
following variables:

– A working graph H, and a working independent set R of H.
– A partition of V (H) into r + 1 sets M0,M1, . . . ,Mr, some of which may be

empty.
– A tuple of r + 1 non-negative integer “thresholds”, ti, for i ∈ {0, . . . , r}.

Informally, the meaning of these variables is the following: H is a working
copy of G where we may have deleted some vertices which we have found to be
irrelevant (using Lemma 3.3); R represents a working independent set which is
reachable from the initial set S in G (and we have a transformation to prove this
reachability); M0 represents the union of initial modules which we have “pro-
cessed” using Lemma 3.3, and therefore turned into independent sets, which
implies that H[M0] is a graph with small neighborhood diversity; and ti repre-
sents a threshold above which we are allowed to perform internal transformations
inside the set Mi without violating the size constraints (that is, while keeping
|R| ≥ k).

To make this more precise we will maintain the following invariants.

1. H is an induced subgraph of G and M0,M1, . . . ,Mr is a partition of V (H).

2. We have a transformation proving that S
G

!k R.
3. λ(G,S, k) = λ(H,R, k).
4. nd(H[M0]) ≤ |{i ∈ [r] | Mi = ∅}| ≤ mw(G).
5. For all i ∈ [r] we have either Mi = Vi or Mi = ∅. If Mi 6= ∅ then Mi∩R 6= ∅.
6. For all i ∈ {0, . . . , r} such that Mi 6= ∅ we have k−|R \Mi| ≤ ti ≤ |R∩Mi|.
7. For each i ∈ [r] such that Mi 6= ∅ we have a transformation (S ∩ Vi)

G[Vi]
!ti

(R ∩Mi).
8. For each i ∈ [r] such that Mi 6= ∅ we have λ(G[Vi], S ∩ Vi, ti) = |R ∩Mi|.

Informally, invariants 1-3 state that we may have deleted some vertices of
G and reconfigured the independent set, but this has not changed the answer.
Invariants 4-5 state that H can be thought of as having two parts: the low
neighborhood diversity part induced by M0 and the rest which includes some
unchanged modules of G. Finally for each such non-empty module Mi invariant
6 states that it is safe to perform TAR(ti) moves inside Mi, and invariants 7,8
and state that the current configuration is reachable and best possible under
such moves, inside the module.

In the remainder, when we say that we “perform” a TAR(k) transformation
from a set R to a set R′, what we mean is that our algorithm appends this
transformation to the transformation which we already have from S to R (by
invariant 2), to obtain a transformation from S to the new set R′.
Preprocessing: Our algorithm begins by performing some preprocessing steps
which ensure that all invariants are satisfied. First, for each i ∈ [r] we compute a
maximum independent set Ai of G[Vi] (this takes time O∗(2mw(G))). We initialize
H := G and R := S. For each i ∈ [r] such that Vi∩S = ∅ we set Mi := ∅, ti := 0
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we add all vertices of Ai to M0, and we delete from H all vertices of Mi\Ai. After
this step we have satisfied invariants 1, 2 (trivially, since R = S), 4 (because M0

is composed of the at most r modules which had an empty intersection with
S, each of which now induces an independent set), and 5. To see that invariant
3 is satisfied we invoke Lemma 3.3 repeatedly: we see that the lemma trivially
applies if S ∩ Vi = ∅ and allows us to delete all vertices of a module which are
outside a maximum independent set.

For the second preprocessing step we do the following for each i ∈ [r] for which
S ∩ Vi 6= ∅: we set Mi := Vi and ti = |S ∩ Vi|. We recall that we have been given
in the input a set Ri,j for j = |S∩Vi| such that λ(G[Vi], S∩Vi, j) = |Ri,j |, and a

transformation (S ∩ Vi)
G[Vi]
!j Ri,j ; we perform this transformation in H, leaving

R \Mi unchanged, to obtain an independent set R such that R ∩Mi = Ri,j .
This is a valid TAR(k) transformation in H since inside Vi the transformation
maintains an independent set with at least ti tokens at all times. We observe
that after this step is applied for all i ∈ [r], all invariants are satisfied. This
preprocessing step is performed in polynomial time, because the sets Ri,j and
the transformations leading to them have been given to us as input. Thus, all
our preprocessing steps take a total time of O∗(2mw(G)).

For the main part of its execution our algorithm will enter a loop which
attempts to apply some rules (given below) which either delete some vertex of
H or produce a new (larger) independent set R, while maintaining all invariants.
Once this is no longer possible the algorithm returns the current set R as the
solution.

Rule 1 (Irrelevant Vertices): Check if there exists i ∈ [r] such that H[Mi]
induces at least one edge and |R ∩Mi| = α(H[Mi]). Then, delete all vertices of
Mi \R from H, set M0 := M0 ∪ (Mi ∩R), ti := 0, and Mi := ∅.
Rule 2a (Configuration Improvement in M0): Let F0 ⊆ M0 be the set of
vertices of M0 that have no neighbors in ∪i∈[r]Mi. Let λ0 := λ(H[F0], R∩F0, k−
|R \ F0|). If λ0 > |R ∩ F0| then set t0 := max{k − |R \ F0|, 0} and perform a
transformation that leaves R \ F0 unchanged and results in |R ∩ F0| = λ0.
Rule 2b (Configuration Improvement in V \M0): For each i ∈ [r] such
that Mi 6= ∅ let λi := λ(H[Mi], R ∩Mi, k − |R \Mi|). If there exists i such that
λi > |R∩Mi|, then set ti := max{k− |R \Mi|, 0} and perform a transformation
that leaves R \Mi unchanged and results in |R ∩Mi| = λi.

Claim A.1. Rule 1 maintains all invariants and can be applied in timeO∗(2mw(G)).

Proof. First, it is not hard to see that the rule can be applied in the claimed
running time, since the only non-polynomial step is computing α(H[Mi]), which
can be done in O∗(2mw(G)).

Let us argue why the rule maintains all invariants. Invariants 1, 2, 5, 6, 7, 8
remain trivially satisfied if they were true before applying the rule. For invariant
4, we observe that H[M0] is composed of the (at most r) modules which have
been turned into independent sets, therefore its neighborhood diversity is at
most mw(G). For invariant 3, we invoke Lemma 3.3. The lemma applies because
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R ∩Mi is itself a maximum independent set of H[Mi], and the lemma states
that we can safely delete vertices of Mi outside this independent set. ♦

Claim A.2. Rule 2a maintains all invariants and can be applied in timeO∗(2mw(G)).

Proof. Let us first make the useful observation that R∩M0 = R∩F0, which is a
consequence of invariant 5: if R contained a vertex u ∈M0 \F0 then this vertex
would have a neighbor in some non-empty Mi, therefore u would be connected
to all of Mi (since Mi is a module), and R would not be independent since
R ∩Mi 6= ∅.

By invariant 4 we have that nd(H[F0]) ≤ mw(G). By Lemma 3.2 we can
therefore compute λ0 in time O∗(2mw(G)). Furthermore, the algorithm of the

lemma returns to us a transformation (R ∩ F0)
H[F0]
!t0 R

′, with |R′| = λ0. We
perform the same transformation in H, keeping R \M0 = R \ F0 unchanged
and resulting in R ∩ F0 = R′. This is a TAR(k) transformation in H because
by invariant 6, t0 + |R \M0| ≥ k. We therefore maintain invariant 2. Invariants
1,3,4,5,7,8 are unaffected by this rule (so remain satisfied). For invariant 6 ob-
serve that we have set t0 := max{k−|R\F0|, 0} ≥ k−|R\M0| and that R∩M0

increases and t0 does not increase when we apply the rule. ♦

Claim A.3. Rule 2b maintains all invariants and can be applied in polynomial
time.

Proof. First, observe that invariants 1,3,4,5 are unaffected. To ease notation, let
j := k − |R \Mi|.

Let us first deal with the easy case j ≤ 0. Recall that during the preprocessing
step we have calculated a maximum independent set of G[Vi], call it Ai, and that
by invariant 5 H[Mi] = G[Vi]. As a result, λi = λ(G[Vi], R ∩Mi, 0) = |Ai| is
a known value. We have set ti = 0, so invariants 6,7 are trivially satisfied no
matter how we modify R∩Mi. We perform a (trivial) transformation that leaves
R \Mi unchanged and first removes all tokens from R ∩Mi and then adds all
tokens of Ai. This is a TAR(k) transformation in G, as |R\Mi| ≥ k, so invariant
2 is satisfied, and invariant 8 is satisfied because Ai is a maximum independent
set of G[Vi]. We therefore assume in the remainder that j > 0.

Let us first argue why λi can be computed in polynomial time. AgainH[Mi] =
G[Vi] by invariant 5, so we want to compute λi = λ(G[Vi], R ∩Mi, j). By in-

variant 7, we have a transformation (R ∩Mi)
G[Vi]
!ti (S ∩ Vi) and by invariant

6 we have ti ≥ k − |R \ Mi| = j. Therefore, using Observation 2.1 we have

(R ∩Mi)
G[Vi]
! j (S ∩ Vi). This means that λi = λ(G[Vi], S ∩ Vi, j). Therefore,

we can find the value λi in the input we have been supplied. Furthermore, we
have in the input an independent set Ri,j that is TAR(j) reachable from S ∩ Vi
in G[Vi] and has |Ri,j | = λi; this set is also TAR(j) reachable from R ∩Mi, so
we can perform a transformation that leaves R \Mi unchanged and results in
R∩Mi = Ri,j . This maintains invariant 2, as well as invariants 7 and 8. Finally,
invariant 6 is satisfied by the new value of ti since ti may only decrease and
R ∩Mi increases. ♦
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We are now ready to argue for the algorithm’s correctness. First, we observe
that by Claims A.1, A.2, A.3, all rules can be applied in time at most O∗(2mw(G)).
Since all rules either delete a vertex of the graph or increase |R|, the algorithm
runs in time O∗(2mw(G)). By invariant 2, the independent set R returned by
the algorithm (when no rule can be applied) is TAR(k) reachable from S in G,
therefore λ(G,S, k) ≥ |R|. We therefore need to argue that |R| ≥ λ(G,S, k).
By invariant 3, this is equivalent to |R| ≥ λ(H,R, k). In other words, we want
to argue that in the graph H on which the algorithm may no longer apply any
rules, it is impossible to reach an independent set T using TAR(k) moves such
that |T | > |R|.

Let M0,M1, . . . ,Mr be the partition of V (H) at the last iteration of our
algorithm. For an independent set T of H we will say that T is interesting if it
satisfies at least one of the following two conditions: (a) for some i ∈ {0, . . . , r}
we have |T ∩Mi| > |R ∩Mi| or (b) for some i ∈ [r] we have R ∩Mi 6= ∅ and
T ∩Mi = ∅. In other words, an independent set is interesting if it manages to
place more tokens than R in a module Mi (or in M0), or if it manages to remove
all tokens from a module Mi that is non-empty in R.

We will make two claims: (i) no interesting set is reachable from R with
TAR(k) moves in H; (ii) if for an independent set T of H we have |T | > |R|,
then T is interesting. Together the two claims imply that |R| ≥ λ(H,R, k), since
all sets which are strictly larger than R are not reachable.

For claim (ii) suppose that T is not interesting, therefore for each i ∈
{0, . . . , r} |T ∩Mi| ≤ |R ∩Mi|. Since M0,M1, . . . ,Mr is a partition of V (H)
we have |T | ≤ |R|.

For claim (i) suppose that T is interesting and R!k T . Among all such sets
T consider one whose shortest reconfiguration sequence from R has minimum
length. Let R0 = R,R1, . . . , R` = T be such a shortest reconfiguration sequence.
Therefore, we have ` ≥ 1 and R0, . . . , R`−1 are not interesting. We now consider
the two possible reasons for which R` may be interesting.

In case there exists i ∈ {0, . . . , r} such that |R`∩Mi| > |R∩Mi| we construct
a transformation from R∩Mi to R` ∩Mi in H[Mi] by considering the sets R0 ∩
Mi, R1∩Mi, . . . , R`∩Mi. We note that this is a TAR(k−|R\Mi|) transformation,
since for all j < ` we have |Rj \Mi| ≤ |R \Mi| and |Rj | ≥ k. But then Rule 2
could have been applied. In particular, if i 6= 0 the transformation proves that
λi = λ(H[Mi], R ∩Mi, k − |R \Mi|) ≥ |R` ∩Mi| > |R ∩Mi| so we could have
applied Rule 2b. If i = 0 we first make the observation that for all j ∈ {0, . . . , `}
we have Rj∩M0 = Rj∩F0 (where F0 is defined in Rule 2a). To see this we argue
(as in Claim A.2) that if there exists u ∈ Rj ∩ (M0 \ F0) then u is connected to
all of a module Mi which has R ∩Mi 6= ∅, and therefore Rj ∩Mi 6= ∅ (as Rj
is not interesting for j < `) which contradicts the independence of Rj . We now
have λ0 = λ(H[F0], R ∩ F0, k − |R \M0|) ≥ |R` ∩ F0| > |R ∩ F0| and Rule 2a
could have been applied.

In the case there exists i ∈ [r] such that R ∩Mi 6= ∅ and R` ∩Mi = ∅, this
means that |R`−1 \Mi| ≥ k, which implies that |R \Mi| ≥ k, because R`−1 is
not interesting. If |R ∩Mi| = α(G[Vi]), then rule 1 would have been applied,
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so we assume |R ∩ Mi| < α(G[Vi]). However, k − |R \ Mi| ≤ 0, so we have
λi = λ(H[Mi], R ∩Mi, k − |R \Mi|) = α(G[Vi]) > |R \Mi|, therefore rule 2b
should have been applied.

Thus, in both cases we see that a rule could have been applied and we have
a contradiction. Therefore, the set R returned is optimal. ut

B Omitted Proofs in Section 4

Proof (Lemma 4.2). The if direction holds as a TS sequence in an induced sub-
graph is always valid in the original graph.

To show the only-if direction, assume that S
G
! S′. Let S0, . . . , S` be a TS

sequence from S0 = S to S` = S′. It suffices to show that no independent set in
the sequence contains a vertex in N(M). Suppose to the contrary that i is the
first index such that Si ∩ N(M) 6= ∅. Since |S ∩M | ≥ 2, we have Si ∩M 6= ∅.
As M is a module, all vertices in M are adjacent to all vertices in N(M). This
contradicts that Si is an independent set. Therefore, Si∩N(M) = ∅ for all i. ut

Proof (Lemma 4.4). If S
G−v
! S′, then S

G
! S′ sinceG−v is an induced subgraph

of G.
To prove the only-if part, assume that S

G
! S′. Let S0, . . . , S` be a TS

sequence from S0 = S to S` = S′. If M∩(S∪S′) is nonempty, let u be the unique
vertex in M∩(S∪S′); otherwise, let u be an arbitrary vertex M−v. For 0 ≤ i ≤ `,
we define Ti as follows: if Si∩M = ∅, then Ti = Si; otherwise, Ti = (Si \M)+u.

Observe that T0 = S and T` = S′. We show that Ti−1
G−v
! Ti for each i ∈ [`]. By

Corollary 4.3, |M ∩ Si| ≤ 1 holds for all i. This implies that |Ti| = |Si| and that
Ti is an independent set of G− v since NG(w) \M = NG(u) \M for all w ∈M .

If |Si−1∩M | = |Si∩M | = 1, then Ti−1 = (Si−1 \M)+u = (Si \M)+u = Ti,

and thus Ti−1
G−v
! Ti. If Si−1 ∩M = Si ∩M = ∅, then Si−1 = Ti−1 and Si = Ti,

and thus Ti−1
G−v↔ Ti. In the remaining case, we may assume by symmetry that

|Si−1 ∩M | = 1 and Si ∩M = ∅. Let Si−1 \ Si = x and Si \ Si−1 = y. Observe
that x ∈ M , y /∈ M , and {x, y} ∈ E(G). Since Ti−1 \ Ti = u and Ti \ Ti−1 = y,

we have {u, y} ∈ E(G− v). Therefore, Ti−1
G−v↔ Ti. ut

Proof (Lemma 4.5). Let P = (p0, . . . , pq) be a u–v path in G[M ], where p0 = u
and pq = v. Let T0 = S′ − v + u and Ti = Ti−1 − pi−1 + pi for i ≥ 1. Clearly,
|Ti−1 M Ti| = 2 for i ∈ [q]. Each Ti is an independent set of G since T0 is an
independent set of G, Ti = T0−u+pi, and NG(u)\M = NG(pi)\M as u and pi
are in the same module M . Since Ti−1 M Ti = {pi−1, pi} and {pi−1, pi} ∈ E(G)

for each i ∈ [q], we have Ti−1
G↔ Ti. As T0 = S′ − v + u and Tq = S′, we have

S′ − v + u
G
! S′. Hence, we can conclude that S

G
! S′ if and only if S

G
!

S′− v+u. On the other hand, since |M | ≥ 2 and M ∩ (S ∪ (S′− v+u))) = {u},
Lemma 4.4 implies that S

G
! S′− v+u if and only if S

G−v
! S′− v+u. Putting

them together, we obtain that S
G
! S′ if and only if S

G−v
! S′ − v + u. ut



Independent Set Reconfiguration Parameterized by Modular-Width 19

Proof (Lemma 4.6). We first show the only-if part. Assume that S
G
! S′. Let

S0, . . . , S` be a TS sequence from S0 = S to S` = S′. Observe that there is an
index i such that Si ∩M = ∅. This is because, otherwise the vertex in Si ∩M is
always in the component of G[M ] that contains u and thus cannot reach v. We

set T = Si. By Lemma 4.4, we have S
G−v
! T . We also have T

G−v
! S − v + u by

Lemma 4.4, and hence S
G−v
! S − v + u.

To show the if part, assume that S
G−v
! S′ − v + u and S

G−v
! T for some

independent set T in G − v with T ∩M = ∅. These assumptions imply that

S
G
! T and T

G
! S′ − v + u. Let S0, . . . , S` be a TS sequence from S0 = T to

S` = S′ − v + u in G − v. For each i, we set Ti = Si if Si ∩M = ∅; otherwise,
we set Ti = (Si \ M) + v. Note that T0 = T and T` = S′. We show that

Ti−1
G
! Ti for each i ∈ [`]. Corollary 4.3 implies that |M ∩ Si| ≤ 1 holds for

all i, and thus |Ti| = |Si|. We can see that Ti is an independent set of G since
NG(v) \M = NG(w) \M for all w ∈M .

If |Si−1 ∩ M | = |Si ∩ M | = 1, then Ti−1 = Ti, and thus Ti−1
G
! Ti. If

Si−1 ∩M = Si ∩M = ∅, then Si−1 = Ti−1 and Si = Ti, and thus Ti−1
G−v↔ Ti.

Now assume that |Si−1 ∩ M | = 1 and Si ∩ M = ∅. Let Si−1 \ Si = x and
Si\Si−1 = y. Observe that x ∈M , y /∈M , and {x, y} ∈ E(G). Since Ti−1\Ti = v

and Ti \ Ti−1 = y, we have {v, y} ∈ E(G), and hence Ti−1
G↔ Ti. Therefore,

T = T0
G
! T` = S′ holds. Since S

G
! T , we conclude that S

G
! S. ut

Proof (Theorem 4.7). We first check the size of each input and return “no” if
|S| 6= |T |. We return “yes” if |S| = |T | = 0. Otherwise, we check the connectivity
of G. If G is not connected, then we can solve each component independently by
Observation 4.1. We return “yes” if and only if all executions on the components
return “yes.”

Now assume that G is connected. We compute a modular decomposition of
G which gives a partition of V into r ≤ mw(G) modules M1, . . . ,Mr. We then
check whether there is i ∈ [r] such that |S ∩Mi| ≥ 2. If such an i exists, then

by Lemma 4.2, S
G
! T if and only if T ∩N(M) = ∅ and S

G−N(M)
! T . Hence,

if T ∩N(M) 6= ∅, then we return “no”; otherwise, we recursively check whether

S
G−N(M)

! T .
In the following, we assume that the instance is not caught by the tests

above. That is, G is connected and |S ∩Mi| ≤ 1 for each i ∈ [r]. We also assume
that |T ∩Mi| ≤ 1 holds for each i ∈ [r], since otherwise the answer is “no” by
Corollary 4.3.

We then exhaustively apply Lemmas 4.4, 4.5, 4.6 to remove “irrelevant”
vertices. When we apply Lemma 4.6, we remember which module is involved as
we need it later for the generalized reachability test. After all, we end up with a
reduced instance where each module is of size 1 and the list of modules that are
used for applying Lemma 4.6. Let H be the reduced graph with the vertex set
{v1, . . . , vr} where vi ∈Mi, S

′, T ′ the modified independent sets, and L the list
of modules used in Lemma 4.6. We construct the auxiliary graph G as follows:
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we set the vertex set V (G) to be the set of all size-|S′| independent sets in H.

Two sets X,Y ∈ V (G) are adjacent in G if and only if X
H↔ Y . We then compute

the component C of G that contains S′. We return “yes” if

– C contains T ′, and
– for each module Mi in L, there is Z ∈ C with Z ∩Mi = ∅ (equivalently,
vi /∈ Z).

Otherwise, we return “no.” Note that |V (G)| ≤
(
r
|S′|
)
≤ 2r and |E(G)| ≤ |V (G)| ·

|V (H)| ≤ 2rr.
The correctness of the algorithm follows directly from the correctness of facts

used (that is, Observation 4.1, Lemmas 4.2, 4.4, 4.5, 4.6, and Corollary 4.3). We
next consider the running time. The algorithm first reduces the instance to a
collection of instances of size O(r). This phase runs in time polynomial in the
number of vertices of G. Then the algorithm solves each instance in time O∗(2r).
Thus the total running time is O∗(2r). ut
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